Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in $${\mathbb {R}}^N$$ R N

Patrizia Pucci1, Mingqi Xiang2, Binlin Zhang3,4
1Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia, Italy
2College of Science, Civil Aviation University of China, Tianjin, People’s Republic of China
3Department of Mathematics, Heilongjiang Institute of Technology, Harbin, People’s Republic of China
4Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)

Alves, C.O., Corrês, F.J.S.A., Ma, T.F.: Positive solutions for a equasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

Ambrosetti, A., Rabinowiz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

Applebaum, D.: Lévy processes—from probability to finance quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)

Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in $${\mathbb{R}}^N$$ R N . J. Differ. Equ. 255, 2340–2362 (2013)

Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252, 6133–6162 (2012)

Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)

Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on $${\mathbb{R}}^{N}$$ R N . Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011)

Caffarelli, L.: Nonlocal equations, drifts and games. Nonlinear Partial Differ. Equ. Abel Symp. 7, 37–52 (2012)

Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203–240 (2011)

Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

Chang, X., Wang, Z.Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965–2992 (2014)

Chen, C., Song, H., Xiu, Z.: Multiple solution for $$p$$ p -Kirchhoff equations in $${\mathbb{R}}^{N}$$ R N . Nonlinear Anal. 86, 146–156 (2013)

Chen, S.J., Lin, L.: Multiple solutions for the nonhomogeneous Kirchhoff equation on $${\mathbb{R}}^N$$ R N . Nonlinear Anal. RWA 14, 1477–1486 (2013)

Colasuonno, F., Pucci, P.: Multiplicity of solutions for $$p(x)$$ p ( x ) -polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 74, 5962–5974 (2011)

Corrěa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of $$p$$ p -Kirchhoff type via variational methods. Bull. Austral. Math. Soc. 74, 236–277 (2006)

Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche 68, 201–216 (2013)

Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

Ferrara, M., Guerrini, L., Zhang, B.L.: Multiple solutions for perturbed non-local fractional Laplacian equations. Electron. J. Differ. Equ. 2013 (2013)

Ferrara, M., Molica Bisci, G., Zhang, B.L.: Existence of weak solutions for non-local fractional problems via Morse theory. Discrete Contin. Dyn. Syst. Ser. B 19, 2483–2499 (2014)

Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

Franzina, G., Palatucci, G.: Fractional $$p$$ p -eigenvalues. Riv. Mat. Univ. Parma 5, 315–328 (2014)

Iannizzotto A., Liu S., Perera K., Squassina M., Existence results for fractional $$p$$ p -Laplacian problems via Morse theory. Adv. Calc. Var. doi: 10.1515/acv-2014-0024

Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional $$p$$ p -eigenvalue problems. Asymptotic Anal. 88, 233–245 (2014)

Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

Lindgren, E., Lindqvist, P.: Fractional eigenvalues. Calc. Var. Partial Differ. Equ. 49, 795–826 (2014)

Lions, P.L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

Lions, P.L.: The concentration-compactness principle in the calculus of variations, the locally compact case. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145, 223–283 (1984)

Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, 161–208 (2004)

Molica Bisci, G.: Fractional equations with bounded primitive. Appl. Math. Lett. 27, 53–58 (2014)

Molica Bisci, G., Pansera, B.A.: Three weak solutions for nonlocal fractional equations. Adv. Nonlinear Stud. 14, 619–630 (2014)

Molica Bisci, G., Servadei, R.: A bifurcation result for non-local fractional equations. Anal. Appl. 13, 371–394 (2015)

Nyamoradi, N.: Existence of three solutions for Kirchhoff nonlocal operators of elliptic type. Math. Commun. 18, 489–502 (2013)

Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in $${\mathbb{R}}^{N}$$ R N involving nonlocal operators. Rev. Mat. Iberoam. (2016, to appear)

Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 257, 1529–1566 (2014)

Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger in $${\mathbb{R}}^{N}$$ R N . J. Math. Phys. 54, 031501 (2013)

Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)

Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

Tan, J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 36, 21–41 (2011)

Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

Xiang, M.Q., Zhang, B.L., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional $$p$$ p -Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)

Zhang, B.L., Ferrara, M.: Multiplicity of solutions for a class of superlinear non-local fractional equations. Complex Var. Elliptic Equ. 60, 583–595 (2015)

Zhang, B.L., Ferrara, M.: Two weak solutions for perturbed non-local fractional equations. Appl. Anal. 94, 891–902 (2015)