Multiple solutions for a class of nonlinear Neumann eigenvalue problems

Communications on Pure and Applied Analysis - Tập 13 Số 4 - Trang 1491-1512 - 2014
Leszek Gasiński, Nikolaos S. Papageorgiou

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. Aizicovici, 2009, The spectrum and an index formula for the Neumann $p$-Laplacian and multiple solutions for problems with crossing nonlinearity,, \emph{Discrete Contin. Dyn. Syst.}, 25, 431, 10.3934/dcds.2009.25.431

A. Ambrosetti, 1984, On a class of nonlinear Dirichlet problems with multiple solutions,, \emph{Nonlinear Anal.}, 8, 1145, 10.1016/0362-546X(84)90116-0

A. Ambrosetti, 1979, Sharp nonuniqueness results for some nonlinear problems,, \emph{Nonlinear Anal.}, 3, 635, 10.1016/0362-546X(79)90092-0

T. Bartsch, 2001, Critical point theory on partially ordered Hilbert spaces,, \emph{J. Funct. Anal.}, 186, 117, 10.1006/jfan.2001.3789

H. Br\'ezis, 1993, $H^1$ versus $C^1$ local minimizers,, \emph{C. R. Acad. Sci. Paris S{\'e}r. I Math.}, 317, 465

A. Castro, 2013, Existence and qualitative properties of solutions for nonlinear Dirichlet problems,, \emph{Discrete Contin. Dyn. Syst.}, 33, 123, 10.3934/dcds.2013.33.123

K.-C. Chang, 1993, <em>Infinite-Dimensional Morse Theory and Multiple Solution Problems,</em>, Birkh{\

G. M. Coclite, 2013, On a Dirichlet problem in bounded domains with singular nonlinearity,, \emph{Discrete Contin. Dyn. Syst.}, 33, 4923, 10.3934/dcds.2013.33.4923

J. Garc\'ia Azorero, 2000, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations,, \emph{Commun. Contemp. Math.}, 2, 385, 10.1142/S0219199700000190

L. Gasi\'nski, 2001, Existence of solutions and of multiple solutions for eigenvalue problems of hemivariational inequalities,, \emph{Adv. Math. Sci. Appl.}, 11, 437

L. Gasi\'nski, 2001, Multiple solutions for semilinear hemivariational inequalities at resonance,, \emph{Publ. Math. Debrecen}, 59, 121, 10.5486/PMD.2001.2453

L. Gasi\'nski, 2001, Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance,, \emph{Proc. Royal Soc. Edinburgh Section A, 131A, 1091, 10.1017/S0308210500001281

L. Gasi\'nski, 2002, A multiplicity result for nonlinear second order periodic equations with nonsmooth potential,, \emph{Bull. Belg. Math. Soc. Simon Stevin}, 9, 245, 10.36045/bbms/1102715102

L. Gasi\'nski, 2006, <em>Nonlinear Analysis,</em>, Chapman and Hall/ CRC Press

L. Gasi\'nski, 2009, Nodal and multiple constant sign solutions for resonant $p$-Laplacian equations with a nonsmooth potential,, \emph{Nonlinear Anal.}, 71, 5747, 10.1016/j.na.2009.04.063

L. Gasi\'nski, 2014, Dirichlet (p,q)-equations at resonance,, \emph{Discrete Contin. Dyn. Syst.}, 34, 2037, 10.3934/dcds.2014.34.2037

L. Gasi\'nski, 2014, A pair of positive solutions for (p,q)-equations with combined nonlinearities,, \emph{Commun. Pure Appl. Anal.}, 13, 203, 10.3934/cpaa.2014.13.203

T. Godoy, 2002, On the antimaximum principle for the $p$-Laplacian with indefinite weight,, \emph{Nonlinear Anal.}, 51, 449, 10.1016/S0362-546X(01)00839-2

S. Th. Kyritsi, 2013, Multiple solutions for nonlinear elliptic equations with an asymmetric reaction term,, \emph{Discrete Contin. Dyn. Syst.}, 33, 2469, 10.3934/dcds.2013.33.2469

G. M. Lieberman, 1988, Boundary regularity for solutions of degenerate elliptic equations,, \emph{Nonlinear Anal.}, 12, 1203, 10.1016/0362-546X(88)90053-3

S. Li, 2000, Mountain pass theorem in order intervals and multiple solutions for semilinear elliptic Dirichlet problems,, \emph{J. Anal. Math.}, 81, 373, 10.1007/BF02788997

S. A. Marano, 2013, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter,, \emph{Commun. Pure Appl. Anal.}, 12, 815, 10.3934/cpaa.2013.12.815

A. Mercaldo, 2013, Behaviour of $p$-Laplacian problems with Neumann boundary conditions when $p$ goes to 1,, \emph{Commun. Pure Appl. Anal.}, 12, 253, 10.3934/cpaa.2013.12.253

D. Motreanu, 2007, Existence and multiplicity of solutions for Neumann problems,, \emph{J. Differential Equations}, 232, 1, 10.1016/j.jde.2006.09.008

D. Motreanu, 2011, Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operators,, \emph{Proc. Amer. Math. Soc.}, 139, 3527, 10.1090/S0002-9939-2011-10884-0

R. S. Palais, 1966, Homotopy theory of infinite dimensional manifolds,, \emph{Topology}, 5, 1, 10.1016/0040-9383(66)90002-4

E. H. Papageorgiou, 2007, A multiplicity theorem for problems with the $p$-Laplacian,, \emph{J. Funct. Anal.}, 244, 63, 10.1016/j.jfa.2006.11.015

M. Struwe, 1982, A note on a result of Ambrosetti and Mancini,, \emph{Ann. Mat. Pura Appl.}, 131, 107, 10.1007/BF01765148

M. Struwe, 2008, <em>Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,</em>, Springer-Verlag

J. Su, 2002, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues,, \emph{Nonlinear Anal.}, 48, 881, 10.1016/S0362-546X(00)00221-2

J. Tyagi, 2013, Multiple solutions for singular $N$-Laplace equations with a sign changing nonlinearity,, \emph{Commun. Pure Appl. Anal.}, 12, 2381, 10.3934/cpaa.2013.12.2381

J. L. V\'azquez, 1984, A strong maximum principle for some quasilinear elliptic equations,, \emph{Appl. Math. Optim.}, 12, 191, 10.1007/BF01449041

P. Winkert, 2013, Multiplicity results for a class of elliptic problems with nonlinear boundary condition,, \emph{Commun. Pure Appl. Anal.}, 12, 785, 10.3934/cpaa.2013.12.785