Multiple solutions for a class of fractional logarithmic Schrödinger equations

Siyuan He1, Xiaochun Liu1
1School of Mathematics and Statistics, Wuhan University, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Applebaum, D.: Lévy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, vol. 116, 2nd ed. Cambridge University Press, Cambridge (2009)

Ambrosio, V., Figueiredo, G.M., Isernia, T., Molica Bisci, G.: Sign-changing solutions for a class of zero mass nonlocal Schrödinger equations. Adv. Nonlinear Stud. 19(1), 113–132 (2019)

Ambrosio, V., Isernia, T.: Sign-changing solutions for a class of Schrödinger equations with vanishing potentials. Rendi. Lincei Mat. Appl. 29, 127–152 (2018)

Ambrosio, V.: Nonlinear Fractional Schrödinger Equations in $${\mathbb{R}}^N$$, Frontiers in Elliptic and Parabolic Problems. Birkhäuser/Springer, Cham (2021)

Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143, 39–71 (2013)

Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

Bouchard, P.J., Georges, A.: Anomalous diffusion indisordered media, statistical mechanics, model and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)

Cotsiolis, A., Tavoularis, N.: On logarithmic Sobolev inequalities for higher order fractional derivatives. Comptes Rendus de l’ Academie des Science Paris Serie l 340, 205–208 (2005)

Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

Constantin, P.: Euler equations, Navier–Stokes equations and turbulence. In: Mathematical Foundation of Turbulent Viscous Flows, Lecture Notes in Math., vol. 1871, p. 1C43. Springer, Berlin (2006)

Cazenave, T.: An introducion to Nonlinear Schrödinger Equations. Textos de Métodos Matemáticos, vol. 26. Universidade Federal do Rio de Janeiro, Rio de Janeiro (1996)

Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

Degiovanni, M., Zani, S.: Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory. Math. Comput. Model. 32, 1377–1393 (2000)

Di, N.E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev space. Bulletin des Sciences Mathemaciques 136, 521–573 (2012)

d’Avenia, P., Squasina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207–5216 (2015)

Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142A, 1237–1262 (2012)

Isernia, T.: Sign-changing solutions for a fractional Kirchhoff equation. Nonlinear Anal. 190, 111623 (2020). (20 pp)

Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 31–35 (2000)

Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)

Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056–108 (2002)

Lions, P.L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49, 315–334 (1982)

Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 (1984)

Li, Y., Zhao, D., Wang, Q.: Ground state solution and nodal solution for fractional nonlinear Schrödinger equation with indefinite potential. J. Math. Phys. 60, 041501 (2019). (15 pp)

Molica, B.G., Rádulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

Miranda, C.: Un’osservazione su un teorema di Brouwer. Bol. Un. Mat. Ital. 3, 5–7 (1940)

Struwe, M.: Variational methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems (Bernlin:Springer) (1900)

Squassina, M., Szulkin, A.: Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc. Var. PDE 54, 585–597 (2015)

Shuai, W.: Mutiple solutions for logarithmic Schrödinger equations. Nonlinearity 32, 2201–2225 (2019)

Wang, D.B., Ma, Y.M., Guan, W.: Least energy sign-changing solutions for the fractional Schrödinger–Poisson systems in $${\mathbb{R}}^3$$. Bound. Value Probl. 25, 18 (2019)

Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996)

Wang, Z., Zhou, H.S.: Radial sign-changing solution for fractional Schrödinger equation. Discrete Contin. Dyn. Syst. 36, 499–508 (2016)

Zloshchastiev, K.G.: Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences. Gravit. Cosmol. 16, 288–297 (2010)

Zhang, W., Wu, X.: Nodal solutions for a fractional Choquard equation (English summary). J. Math. Anal. Appl. 464, 1167–1183 (2018)