Multiple solutions for a class of Kirchhoff type problems with concave nonlinearity

Nonlinear Differential Equations and Applications NoDEA - Tập 19 Số 5 - Trang 521-537 - 2012
Bitao Cheng1, Xian Wang2, Jun Liu1
1Department of Mathematics and Information Science, Qujing Normal University, Qujing, People’s Republic of China
2Department of Mathematics, Yunnan Normal University, Kunming, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alves C.O., Corrêa F.J.S.A., Ma T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

Ambrosetti A., Rabinowitz P. H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

Bernstein S.: Sur une class d’ẑquations fonctionnelles aux dẑrivẑes partielles. Bull. Acad. Sci. URSS. Sẑr. Math. [Izv. Akad. Nauk SSSR] 4, 17–26 (1940)

Brezis H., Nirenberg L.: Remarks on finding critical points. Commun. Pure Appl. Math. 64, 939–963 (1991)

Cerami G.: Un criterio di esistenza per i punti critici su varietá illimitate. Istit. Lombardo Acad. Sci. Lett. Rend. A 112, 236–332 (1978)

Cheng B., Wu X.: Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. 71, 4883–4892 (2009)

Cheng, B., Wu, X.: Multiplicity of nontrivial solutions for Kirchhoff type problems. Bound. Value Probl. 2010, 13 (2010). doi: 10.1155/2010/268946

Chipot M., Lovat B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 30(7), 4619–4627 (1997)

Costa D.G., Miyagaki O.H.: Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains. J. Math. Anal. 193, 737–755 (1995)

D’Ancona P., Spagnolo S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108, 247–262 (1992)

He X., Zou W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009)

Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations, Proceedings of the International Symposium Inst. Mat, Univ. Fed. Rio de Janeiro, 1997. North-Holland Mathematics Study, vol. 30, pp. 284–346. North-Holland, Amsterdam (1978)

Ma T.F., Muñoz Rivera J.E.: Positive solutions for a nonlinear nonlocal elliptic transmission problem. Appl. Math. Lett. 16, 243–248 (2003)

Mao A., Zhang Z.: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonlinear Anal. 70, 1275–1287 (2009)

Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989)

Perera K., Zhang Z.: Nontrival solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221(1), 246–255 (2006)

Pohoẑaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (N. S.) 96:152–166, 168 (1975)

Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. American Mathematical Society, Providence (1986)

Zhang Z., Perera K.: Sign changing solutions of Kirchhoff type problems via invarint sets of descent flow. J. Math. Anal. Appl. 317(2), 456–463 (2006)