Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation

Indian Journal of Pure and Applied Mathematics - Tập 45 Số 6 - Trang 989-1002 - 2014
Jian-Guo Liu1, Zhikai Zeng2
1College of Computer, Jiangxi University of Traditional Chinese Medicine, JiangXi, P. R. China
2Department of basic, Jiangxi Vocational and Technical College of Communication, JiangXi, P. R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Gh. Forozani and M. Ghorveei Nosrat, Soltary solution of modified bad and good Boussinesq equation by using of tanh and extended tanh methods, Indian J. Pure Appl Math., 44 (2013), 497–510.

W. Q. Zhao, H 1-random attractors and random equilibria for stochastic reaction-diffusion equations with multiplicative noises, Commun. Nonlinear. Sci. Numer. Simulat., 18 (2013), 2707–2721.

R. Gogoi, R. Roychoudhury and M. Khan, Arbitrary amplitude dust ion acoustic solitary waves and double layers in a plasma with non-thermal electrons, Indian J. Pure Appl. Math., 50 (2012), 110–116.

M. Russo, R. A. V. Gorder and S. R. Choudhury, Painlevé property and exact solutions for a nonlinear wave equation with generalized power-law nonlinearities, Commun Nonlinear. Sci. Numer. Simulat., 18 (2013), 1623–1634.

W. G. Rui, Different kinds of exact solutions with two-loop character of the two-component short pulse equations of the first kind, CommunNonlinear. Sci. Numer. Simulat., 18 (2013), 2667–2678.

Y. K. Li and Y. Ye, Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms, Commun. Nonlinear. ScL Numer. Simulat., 18 (2013), 3190–3201.

S. Q. Zhang, Existence result of solutions to differential equations of variable-order with nonlinear boundary value conditions, Commun Nonlinear. Sci. Numer. Simulat., 18 (2013), 3289–3297.

A. M. Wazwaz, On the noulocal Boussinesq equation: Multiple-soliton solutions, Appl. Math. Lett., 26 (2013), 1094–1098.

C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19 (1967), 1095–1097.

X. B. Hu and W. X. Ma, Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett. A., 293 (2002), 161–165.

H. Woopyo and Y. D. Jung, Auto-Bäcklund transformation and analytic solutions for general variable-coefficient KdV equation, Phys. Lett. A., 257 (1999), 149–152.

S. J. Yu, K. Thda, N. Sasa and T. Fukuyarna, N-soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions, J. Phys. A: Math. Gen., 31 (1998), 3337–3347.

M. S. Bruzón, M. L. Gandarias, S. Muriel, Kh. Ramíres, S. Saez and F. R. Romero, The Calogero-Bogoyavlenskii-Schiff equation in dimension 2+ 1, Teoret. Mat. Fiz., 137 (2003), 14–26; Theoret. Math. Phys., 137 (2003), 1367–3777.

F. Calogero and A. Degasperis, Nonlinear evolution equations solvable by the inverse spectral transform I, Nuovo. Cimento. B., 32 (1976), 201–242.

Z. Y. Yan, New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation, Phys. Lett. A., 318 (2003), 78–83.

C. L. Bai and H. Zhao, Generalized extended tanh-function method and its application, Chaos, Solitons and Fractals., 27 (2006), 1026–1035.

T. X. Zhang, H. N. Xuan, D. F. Zhang and C. J. Wang, Non-travelling wave solutions to a (3+1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures, Chaos, Solitons and Fractals., 34 (2007), 1006–1013.

L. N. Song and H. Q. Zhang, A new variable coefficient Korteweg-de Vries equation-based sub-equation method and its application to the (3+1)-dimensional potential-YTSF equation, Appl. Math. Comput., 189 (2007), 560–566.

Y. Z. Li and J. G. Liu, Auto-Bäcklund transformation and new exact solutions of the generalized variable coefficients two-dimensional Korteweg-de Vries model, Phys. Plasmas., 14 (2007), 023502.