Multiple positive solutions for a fractional $$ p \& q$$ -Laplacian system with concave and critical nonlinearities

Springer Science and Business Media LLC - Tập 9 - Trang 781-805 - 2023
Rachid Echarghaoui1, Moussa Khouakhi2, Mohamed Masmodi1
1Department of Mathematics (LAGA), Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
2Department of Mathematics (LAMA), Faculty of Sciences, Sidi Mohamed Ben Abdellah, Fes, Morocco

Tóm tắt

In this paper, we study the following nonlinear fractional p &q-Laplacian system with critical exponent                                                        $$\begin{aligned} {\left\{ \begin{array}{ll}(-\Delta )_p^{s_1} u+(-\Delta )_q^{s_2} u=\lambda \vert u\vert ^{r-2} u+\frac{2 \alpha }{\alpha +\beta }\vert u\vert ^{\alpha -2} u\vert v\vert ^{\beta }, &{} \text{ in } \Omega , \\ (-\Delta )_p^{s_1} v+(-\Delta )_q^{s_2} v=\mu \vert v\vert ^{r-2} v+\frac{2 \beta }{\alpha +\beta }\vert u\vert ^{\alpha }\vert v\vert ^{\beta -2} v, &{} \text{ in } \Omega , \\ u=v=0, &{} \text{ in } {\mathbb {R}}^{N} \backslash \Omega ,\end{array}\right. } \end{aligned}$$ where $$\Omega $$ is a smooth bounded set in $${\mathbb {R}}^{N}, \lambda , \mu >0$$ are two parameters, $$0p s_{1}$$ , $$\alpha ,\beta >1$$ satisfy $$\alpha +\beta =p_{s_{1}}^{*}$$ with $$p_{s_{1}}^{*}=\frac{n p}{n-p s_{1}}$$ is the fractional Sobolev critical exponent and $$(-\Delta )_{t}^{s}$$ is the fractional t-Laplacian operator. With the help of Nehari manifold and Ljusternik-Schnirelmann category, we show that the above system has at least $$cat(\Omega )+1$$ distinct positive solutions, where $$cat(\Omega )$$ denotes the Lusternik-Schnirelman category of $$\Omega $$ in itself.

Tài liệu tham khảo

Azorero, J.G., Peral Alonso, I.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 2, 877–895 (1991) Alves, C., de Morais Filho, D., Souto, M.: On systems of elliptic equations involving subcritical or critical Sobolev exponents. Nonlinear Anal. 42, 771–787 (2000) Benci, V., Micheletti, A.M., Visetti, D.: An eigenvalue problem for a quasilinear elliptic field equation. J. Differ. Equ. 184(2), 299–320 (2002) Benmouloud, S., Echarghaoui, R., Sbai, S.: Multiplicity of positive solutions for a critical quasilinear elliptic system with concave and convex nonlinearities. J. Math. Anal. Appl. 396, 375–385 (2012) Bhakta, M., Mukherjee, D.: Multiplicity results for (p, q) fractional elliptic equations involving critical nonlinearities. Adv. Differ. Equ. 3(4), 185–228 (2019) Brandle, C., Colorado, E., de Pablo, A.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143, 39–71 (2013) Brasco, L., Mosconi, S., Squassina, M.: Optimal decay of extremal functions for the fractional Sobolev inequality. Calc. Var. Partial Differ. Equ. 55, 1–32 (2016) Chen, W.J.: Existence of solutions for critical fractional p & q-laplacian system. Complex Var. Elliptic Equ. 66(4), 626–641 (2021) Chen, W.J., Deng, S.B.: The Nehari manifold for a fractional p-Laplacian system involving concave-convex nonlinearities. Nonlinear Anal. RWA 27, 80–92 (2016) Chen, W., Gui, Y.: Multiplicity of solutions for fractional p &q-Laplacian system involving critical concave-convex nonlinearities. Appl. Mathemat. Lett. 96, 81–88 (2019) Chen, W., Squassina, M.: Critical nonlocal systems with concave-convex powers. Adv. Nonlinear Stud. 16(4), 821–842 (2016) Chen, C., Wu, T.: The Nehari manifold for indefinite semilinear elliptic systems involving critical exponent. Appl. Math. Comput. 218, 10817–10828 (2012) Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional p-minimizers. Ann. Inst. H Poincare Anal. Non Lineaire 33(5), 1279–1299 (2016) Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2011) Ding, L., Xiao, S.: Multiple positive solutions for a critical quasilinear elliptic system. Nonlinear Anal. 72, 2592–2607 (2010) Echarghaoui, R., Khouakhi, M., Masmodi, M.: Existence and multiplicity of positive solutions for a class of critical fractional Laplacian systems. J. Elliptic Parabol. Equ. (2022). https://doi.org/10.1007/s41808-022-00177-6 Echarghaoui, R., Masmodi, M.: Two disjoint and infinite sets of solutions for a concave-convex critical fractional Laplacian equation. Fract. Calc. Appl. Anal. 25, 1604–1629 (2022). https://doi.org/10.1007/s13540-022-00060-0 Fan, H.: Multiple positive solutions for a critical elliptic system with concave and convex nonlinearities. Nonlinear Anal. Real World Appl. 18, 14–22 (2014) Goyal, S., Sreenadh, K.: A Nehari manifold for non-local elliptic operator with concave-convex non-linearities and signchanging weight function. Proc. Indian Acad. Sci. (Math. Sci.) 125(4), 545–558 (2015) Li, Q., Yang, Z.: Multiple positive solutions for a fractional Laplacian system with critical nonlinearities. Bull. Malays. Math. Soc. 2, 1–27 (2016) Mosconi, S., Perera, K., Squassina, M., Yang, Y.: The Brezis-Nirenberg problem for the fractional p-Laplacian. Calc. Var. Partial Differ. Equ. 55(4), 25 (2016) Yin, H.: Existence of multiple positive solutions for a p-q-Laplacian system with critical nonlinearities. J. Math. Anal. Appl. 403, 200–214 (2013) Yin, H., Yang, Z.E.: Existence of positive solutions for a class of quasilinear elliptic system with concave-convex nonlinearities. J. Appl. Math. Inform. 29, 921–936 (2011) Willem, W.: Minimax Theorems. Birkhäuser, Boston (1996)