Multiple kernel ensemble learning for software defect prediction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aljamaan, H.I., Elish, M.O.: An empirical study of bagging and boosting ensembles for identifying faulty classes in object-oriented software. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, pp. 187–194 (2009)
Amasaki, S., Takagi, Y., Mizuno, O., Kikuno, T.: A Bayesian belief network for assessing the likelihood of fault content. In: International Symposium on Software Reliability Engineering, pp. 215–226 (2003)
Bennett, K.P., Momma, M., Embrechts, M.J.: MARK: a boosting algorithm for heterogeneous kernel models. In: Proceedings of 8th ACM-SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada: ACM, pp. 24–31 (2002)
Bezerra, E. Miguel, Oliveiray, A.L.I., Adeodatoz, P.J.L.: Predicting software defects: a cost-sensitive approach. International Conference Systems, Man, and Cybernetics, pp. 2515–2522 (2011)
Bi, J., Zhang, T., Bennett, K.P.: Column-generation boosting methods for mixture of kernels. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, USA: ACM, pp. 521–526 (2004)
Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl. 36, 7346–7354 (2009)
Damoulas, T., Girolami, M.A.: Probabilistic multi-class multi-kernel learning: on protein fold recognition and remote homology detection. Bioinformatics 24(10), 1264–1270 (2008)
Elish, K., Elish, M.: Predicting defect-prone software modules using support vector machines. J. Syst. Softw. 81(5), 649–660 (2008)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)
Gao, K., Khoshgoftaar, T.M.: Software defect prediction for high-dimensional and class-imbalanced data. SEKE, pp. 89–94 (2011)
Gao, K., Khoshgoftaar, T.M., Napolitano, A.: A hybrid approach to coping with high dimensionality and class imbalance for software defect prediction. Mach. Learn. Appl. 2, 281–288 (2012)
GÄonen, M., Alpaydin, E.: Localized multiple kernel learning. In: Proceedings of the 25th International Conference on Machine Learning. Helsinki, Finland: ACM, pp. 352–359 (2008)
Gayatri, N., Nickolas, S., Reddy, A.V.: Feature selection using decision tree induction in class level metrics dataset for software defect predictions. In: The World Congress on Engineering and Computer Science, pp. 124–129 (2010)
Gehler, P.V., Nowozin, S.: On feature combination for multiclass object classification. IEEE Int. Conf. Comput. Vis. 2, 221–228 (2009)
Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The Misuse of the NASA metrics data program data sets for automated software defect prediction. in EASE 2011. Durham (2011)
Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: Using the support vector machine as a classification method for software defect prediction with static code metrics. Eng. Appl. Neural Netw. 43, 223–234 (2009)
Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. Softw. Eng. 38(6), 1276–1304 (2011)
Halstead, M.H.: Elements of Software Science (Operating and Programming Systems Series). Elsevier North-Holland, New York (1977)
He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
Jing, X.Y., Ying, S., Zhang, Z.W., Wu, S.S., Liu, J.: Dictionary learning based software defect prediction. In: Proceedings of the 36th International Conference on Software Engineering. Hyderabad, India: ACM, pp. 414–423 (2014)
Kembhavi, A., Siddiquie, B., Miezianko, R.: Incremental multiple Kernel learning for object recognition. Int. Conf. Comput. Vis. 2, 638–645 (2009)
Khoshgoftaar, M.T., Gao, K., Seliya, N.: Attribute selection and imbalanced data: problems in software defect prediction. In: International Conference on Tools with Artificial Intelligence, pp. 137–144 (2010)
Khoshgoftaar, T.M., Seliya, N.: Software quality classification modeling using the SPRINT decision tree algorithm. In: Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence, Washington, DC, USA, pp. 365–374 (2002)
Khoshgoftaar, T.M., Seliya, N.: Tree-based software quality estimation models for fault prediction. IEEE Symposium on Software Metrics, pp. 203–214 (2002)
Lewis, D.P., Jebara, T., Noble, W. S.: Nonstationary kernel combination. In: Proceedings of the 23rd International Conference on Machine Learning. Pittsburgh, USA: ACM, pp. 553–560 (2006)
Luo, G.C., Ma, Y., Qin, K.: Asymmetric learning based on Kernel partial least squares for software defect prediction. IEICE Trans. 95–D(7), 2006–2008 (2012)
Lyu, M.R.: Software reliability engineering: a roadmap. In: Proceedings of the 2007 Future of Software Engineering (FOSE’07). Washington, DC, USA: IEEE Computer Society, pp. 153–170 (2007)
Ma, Y., Luo, G.C., Chen, H.: Kernel based asymmetric learning for software defect prediction. IEICE Trans. 95–D(1), 215–226 (2012)
Menzies, T., Greenwald, J., Frank, A.: Datamining static code attributes to learn defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)
Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)
Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)
Nam, J., Pany, S.J., Kim, S.: Transfer defect learning. In: International Conference on Software Engineering, pp. 382–391 (2013)
Ong, C.S., Smola, A.J., Williamson, R.C.: Learning the kernel with hyperkernels. J. Mach. Learn. Res. 6(7), 1043–1071 (2005)
Paikari, E., Richter, M.M., Ruhe, G.: Defect prediction using case-based reasoning: an attribute weighting technique based upon sensitivity analysis in neural networks. Int. J. Softw. Eng. Knowl. Eng. 22(5), 747–768 (2012)
Rakotomamonjy, A., Bach, F., Canu, S.: More efficiency in multiple kernel learning. Int. Conf. Mach. Learn. 20(24), 775–782 (2007)
Ren, J., Qin, K., Ma, Y., Luo, G.: On software defect prediction using machine learning. J. Appl. Math. 2014(785435), 8 (2014)
Schoelkopf, B., Smola, A., MullerK, R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)
Scholkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Muller, K.R., Ratsch, G.: Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10(5), 1000–1017 (1999)
Seiffert, C., Khoshgoftaar, T.M., Van Hulse, J.: Improving software-quality predictions with data sampling and boosting. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 39(6), 1283–1294 (2009)
Seliya, N., Khoshgoftaar, T.M., Hulse, J.V.: Predicting faults in high assurance software. In: IEEE International High Assurance Systems Engineering Symposium, pp. 26–34 (2010)
Seliya, N., Khoshgoftaar, T.M.: The use of decision trees for cost-sensitive classification an empirical study in software quality prediction. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(5), 448–459 (2011)
Shepperd, M., Song, Q.B., Sun, Z.B., Mair, C.: Data quality: some comments on the NASA software defect data sets. IEEE Trans. Softw. Eng. 39(9), 1208–1215 (2013)
Sun, Y., Kamel, Mohamed S., Wong, Andrew K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40(12), 3358–3378 (2007)
Sun, Z.B., Song, Q.B., Zhu, X.Y.: Using coding based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cybern. Part C 42(6), 1806–1817 (2012)
Thwin, M.M.T., Quah, T.S.: Application of neural networks for software quality prediction using object-oriented metrics. J. Syst. Softw. 76(2), 147–156 (2005)
Turhan, B., Bener, A.: Software Defect Prediction: Heuristics for Weighted Naïve Bayes. In: International Conference on Software and Data Technologies, pp. 244–249 (2007)
Turhan, B., Bener, A.: Analysis of naïve bayes’ assumptions on software fault data: an empirical study. Data Knowl. Eng. 68(2), 278–290 (2009)
Wang, T., Li, W.H.: Naïve Bayes software defect prediction model. International Conference on Computational Intelligence and Software Engineering, pp. 1–4 (2010)
Wang, J., Shen, B.J., Chen, Y.T.: Compressed C4.5 models for software defect prediction. International Conference on Quality Software, pp. 13–16 (2012)
Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)
Xia, Hao, Hoi, Steven C.H.: MKBoost: a framework of multiple kernel boosting. IEEE Trans. Knowl. Data Eng. 25(7), 1574–1586 (2013)
Xing, F., Guo, P., Lyu, M.R.: A novel method for early software quality prediction based on support vector machine. In: Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering, Chicago, Illinois, USA, pp. 213–222 (2005)
Yambor, W.S., Draper, B.A., Beveridge, J.R.: Analyzing PCA-based face recognition algorithms: eigenvector selection and distance measures. In: Proceeding of the 2nd Workshop on Empirical Evaluation in Computer Vision, Dublin, Ireland, pp.1–15 (2000)
Yan, Z., Chen, X.Y., Guo, P.: Software defect prediction using fuzzy support vector regression. Adv. Neural Netw. 6064, 17–24 (2010)
Zheng, J.: Cost-sensitive boosting neural networks for software defect prediction. Expert Syst. Appl. 37(6), 4537–4543 (2010)
Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1), 63–77 (2006)