Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Han, 2013
Florschuetz, 1980, Periodic streamwise variations of heat transfer coefficients for inline and staggered arrays of circular jets with crossflow of spent air, ASME J. Heat Tran., 102, 132, 10.1115/1.3244224
Florschuetz, 1981, Streamwise flow and heat transfer distributions for jet array impingement with crossflow, ASME J. Heat Tran., 103, 337, 10.1115/1.3244463
Han, 2001, Jet-impingement heat transfer in gas turbine systems, Ann. N. Y. Acad. Sci., 147, 147, 10.1111/j.1749-6632.2001.tb05849.x
Weigand, 2011, Multiple jet impingement: a review, Heat Tran. Res., 42, 101, 10.1615/HeatTransRes.v42.i2.30
Spring, 2012, An experimental and numerical study of heat transfer from arrays of impinging jets with surface ribs, ASME J. Heat Tran., 134, 082201, 10.1115/1.4006155
Brakmann, 2016, Experimental and numerical heat transfer investigation of an impinging jet array on a target plate roughened by cubic micro pin fins, J. Turbomach., 138, 111010, 10.1115/1.4033670
Andrews, 2003, Enhanced impingement heat transfer: comparison of co-flow and crossflow with rib tabulators
Son, 2005, The effect of roughness element fillet radii on the heat transfer enhancement in an impingement cooling system
EI-Gabry, 2005, Experimental investigation of local heat transfer distribution on smooth and roughened surfaces under an array of angled impingement jets, ASME J. Turbomach., 127, 532, 10.1115/1.1861918
Xing, 2011, Experimental and numerical investigation of impingement heat transfer on a flat and micro-ribs roughened plate with different crossflow schemes, Int. J. Therm. Sci., 50, 1293, 10.1016/j.ijthermalsci.2010.11.008
Buzzard, 2017, Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer, Int. J. Heat Mass Tran., 110, 805, 10.1016/j.ijheatmasstransfer.2017.03.061
Terzis, 2016, On the correspondence between flow structures and convective heat transfer augmentation for multiple jet impingement, Exp. Fluid, 57, 146, 10.1007/s00348-016-2232-7
Terzis, 2016, Aerothermal investigation of a single row divergent narrow impingement channel by particle image velocimetry and liquid crystal thermography, ASME J. Turbomach., 138, 051003, 10.1115/1.4032328
Terzis, 2014, Detailed heat transfer distributions of narrow impingement channels for cast-in turbine airfoils, ASME J. Turbomach., 136, 091011, 10.1115/1.4027679
Hong, 2006, Heat/mass transfer with circular pin fins in impingement/effusion cooling system with crossflow, AIAA J. Thermophys. Heat Tran., 20, 728, 10.2514/1.16864
Cho, 2014, Effects of hole arrangements on local heat/mass transfer for impingement/effusion cooling with small hole spacing, J. Turbomach., 130, 786
Funazaki, 2003, Systematic numerical studies on heat transfer and aerodynamic characteristics of impingement cooling devices combined with pins
Mensch, 2015, Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall, Int. J. Heat Mass Tran., 82, 66, 10.1016/j.ijheatmasstransfer.2014.10.076
Ekkad, 2000, A transient liquid crystal thermography technique for gas turbine heat transfer measurements, Meas. Sci. Technol., 11, 957, 10.1088/0957-0233/11/7/312
Terzis, 2012, Thermocouple thermal inertia effects on impingement heat transfer experiments using the transient liquid crystal technique, Meas. Sci. Technol., 23, 115303, 10.1088/0957-0233/23/11/115303
Moffat, 1988, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X
Launder, 1974, The numerical computation of turbulent flows, Comput. Meth. Appl. Math., 3, 269