Nhiều biến thể di truyền của viêm mũi xoang mãn tính có polyp mũi có liên quan đến các thông số hô hấp ở nam giới mắc chứng ngưng thở khi ngủ do tắc nghẽn

Sleep and Breathing - Tập 26 - Trang 57-65 - 2021
Qianqian Zhang1,2,3, Xiaoting Wang1,2,3, Xiangyu Cheng1,2,3, Xiaolin Wu4, Yunhai Feng5, Huajun Xu1,2,3, Huaming Zhu1,2,3, Hongliang Yi1,2,3, Weitian Zhang1,2,3, Xinyi Li1,2,3, Haibo Ye1,2,3
1Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
2Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
3Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
4The Central Laboratory of the Eighth People’s Hospital of Shanghai, Shanghai, China
5The Eighth People’s Hospital of Shanghai, Shanghai, China

Tóm tắt

Bệnh nhân mắc viêm mũi xoang mãn tính có polyp mũi (CRSwNP) có nguy cơ cao hơn về chứng ngưng thở khi ngủ do tắc nghẽn (OSA). Tuy nhiên, mối quan hệ giữa CRSwNP và OSA vẫn còn chưa rõ ràng. Mục tiêu của nghiên cứu này là đánh giá mối liên hệ giữa nhiều biến thể đơn nucleotide (SNP) của CRSwNP với các thông số liên quan đến giấc ngủ và hô hấp ở nam giới mắc OSA. Chúng tôi đã bao gồm tám SNP của CRSwNP trong 2320 người tham gia sau khi sàng lọc nghiêm ngặt. Đối với mỗi người tham gia, điểm số nguy cơ di truyền (GRS) được tính toán dựa trên hiệu ứng tích lũy của nhiều biến thể di truyền của CRSwNP. Phân tích tương quan hai biến được sử dụng để đánh giá mối quan hệ giữa các đa hình di truyền của CRSwNP và các thông số polysomnography ở nam giới mắc OSA. Phân tích hồi quy logistic được sử dụng để đánh giá mối quan hệ giữa nguy cơ mắc OSA và các đa hình di truyền của CRSwNP. Ở OSA vừa phải, rs28383314 có liên quan đến chỉ số khử oxy, và rs4807532 có liên quan tích cực đến chỉ số vi thức dậy (r = 0,09, P = 0,03 và r = 0,11, P = 0,01, tương ứng). GRS CRSwNP có mối tương quan tích cực với chỉ số khử oxy và tỷ lệ thời gian tích lũy với SpO2 < 90% ở OSA vừa phải (r = 0,13, P < 0,001 và r = 0,1, P = 0,01, tương ứng). Không có sự liên quan nào giữa GRS CRSwNP và nguy cơ mắc OSA (OR = 1,007; 95% CI, 0,973–1,042; P = 0,702). Ở nam giới mắc OSA vừa phải, các biến thể di truyền đơn của CRSwNP có liên quan đến các thông số liên quan đến giấc ngủ, và các hiệu ứng tích lũy của các biến thể di truyền CRSwNP có liên quan đến chỉ số thiếu oxy. CRSwNP có thể là một tình trạng có nguy cơ cho các rối loạn giấc ngủ ở nam giới mắc OSA vừa phải.

Từ khóa


Tài liệu tham khảo

Senaratna CV, Perret JL, Lodge CJ, Lowe AJ, Campbell BE, Matheson MC, Hamilton GS, Dharmage SC (2017) Prevalence of obstructive sleep apnea in the general population: a systematic review. Sleep Med Rev 34:70–81. https://doi.org/10.1016/j.smrv.2016.07.002 Khalyfa A, Kheirandish-Gozal L, Gozal D (2018) Exosome and macrophage crosstalk in sleep-disordered breathing-induced metabolic dysfunction. Int J Mol Sci 19(11). https://doi.org/10.3390/ijms19113383 Lévy P, Kohler M, McNicholas WT, Barbé F, McEvoy RD, Somers VK, Lavie L, Pépin J-L (2015) Obstructive sleep apnoea syndrome. Nat Rev Dis Primers 1:15015. https://doi.org/10.1038/nrdp.2015.15 Wu BG, Sulaiman I, Wang J, Shen N, Clemente JC, Li Y, Laumbach RJ, Lu SE, Udasin I, Le-Hoang O, Perez A, Alimokhtari S, Black K, Plietz M, Twumasi A, Sanders H, Malecha P, Kapoor B, Scaglione BD, Wang A, Blazoski C, Weiden MD, Rapoport DM, Harrison D, Chitkara N, Vicente E, Marin JM, Sunderram J, Ayappa I, Segal LN (2019) Severe obstructive sleep apnea is associated with alterations in the nasal microbiome and an increase in inflammation. Am J Respir Crit Care Med 199(1):99–109. https://doi.org/10.1164/rccm.201801-0119OC Hui JW, Ong J, Herdegen JJ, Kim H, Codispoti CD, Kalantari V, Tobin MC, Schleimer RP, Batra PS, LoSavio PS, Mahdavinia M (2017) Risk of obstructive sleep apnea in African American patients with chronic rhinosinusitis. Ann Allergy Asthma Immunol 118(6):685–688 e681. https://doi.org/10.1016/j.anai.2017.03.009 Bengtsson C, Lindberg E, Jonsson L, Holmström M, Sundbom F, Hedner J, Malinovschi A, Middelveld R, Forsberg B, Janson C (2017) Chronic rhinosinusitis impairs sleep quality: results of the GA2LEN study. Sleep 40(1). https://doi.org/10.1093/sleep/zsw021 Olsen KD, Kern EB (1990) Nasal influences on snoring and obstructive sleep apnea. Mayo Clin Proc 65(8):1095–1105. https://doi.org/10.1016/s0025-6196(12)62722-0 Uz U, Günhan K, Yılmaz H, Ünlü H (2017) The evaluation of pattern and quality of sleep in patients with chronic rhinosinusitis with nasal polyps. Auris Nasus Larynx 44(6):708–712. https://doi.org/10.1016/j.anl.2017.01.015 Stevens WW, Schleimer RP, Kern RC (2016) Chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract 4(4):565–572. https://doi.org/10.1016/j.jaip.2016.04.012 Panogeorgou T, Tserbini E, Filou S, Vynios DH, Naxakis SS, Papadas TA, Goumas PD, Mastronikolis NS (2016) Hyaluronan synthases and hyaluronidases in nasal polyps. European archives of oto-rhino-laryngology (7):1801–1808. https://doi.org/10.1007/s00405-015-3848-6 Värendh M, Johannisson A, Hrubos-Strøm H, Andersson M (2017) Sleep quality improves with endoscopic sinus surgery in patients with chronic rhinosinusitis and nasal polyposis. Rhinology 55(1):45–52. https://doi.org/10.4193/Rhin16.065 Rundo JV, Downey R 3rd (2019) Polysomnography. Handb Clin Neurol 160:381–392. https://doi.org/10.1016/b978-0-444-64032-1.00025-4 Fokkens WJ, Lund VJ, Hopkins C, Hellings PW, Kern R, Reitsma S, Toppila-Salmi S, Bernal-Sprekelsen M, Mullol J, Alobid I, Terezinha Anselmo-Lima W, Bachert C, Baroody F, von Buchwald C, Cervin A, Cohen N, Constantinidis J, De Gabory L, Desrosiers M, Diamant Z, Douglas RG, Gevaert PH, Hafner A, Harvey RJ, Joos GF, Kalogjera L, Knill A, Kocks JH, Landis BN, Limpens J, Lebeer S, Lourenco O, Matricardi PM, Meco C, L OM, Philpott CM, Ryan D, Schlosser R, Senior B, Smith TL, Teeling T, Tomazic PV, Wang DY, Wang D, Zhang L, Agius AM, Ahlstrom-Emanuelsson C, Alabri R, Albu S, Alhabash S, Aleksic A, Aloulah M, Al-Qudah M, Alsaleh S, Baban MA, Baudoin T, Balvers T, Battaglia T, Bedoya JD, Beule A, Bofares KM, Braverman I, Brozek-Madry E, Richard B, Callejas C, Carrie S, Caulley L, Chussi D, de Corso E, Coste A, Devyani L, El Hadi U, Elfarouk A, Eloy PH, Farrokhi S, Felisati G, Ferrari MD, Fishchuk R, Grayson W, Goncalves PM, Grdinic B, Grgic V, Hamizan AW, Heinichen JV, Husain S, Ping TI, Ivaska J, Jakimovska F, Jovancevic L, Kakande E, Kamel R, Karpischenko S, Kariyawasam HH, Kjeldsen A, Klimek L, Kim SW, Letort JJ, Lopatin A, Mahdjoubi A, Netkovski J, Nyenbue Tshipukane D, Obando-Valverde A, Okano M, Onerci M, Ong YK, Orlandi R, Ouennoughy K, Ozkan M, Peric A, Plzak J, Prokopakis E, Prepageran N, Psaltis A, Pugin B, Raftopulos M, Rombaux P, Sahtout S, Sarafoleanu CC, Searyoh K, Rhee CS, Shi J, Shkoukani M, Shukuryan AK, Sicak M, Smyth D, Snidvongs K, Soklic Kosak T, Stjarne P (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58(Suppl S29):1–464. https://doi.org/10.4193/Rhin20.600 Kristjansson RP, Benonisdottir S, Davidsson OB, Oddsson A, Tragante V, Sigurdsson JK, Stefansdottir L, Jonsson S, Jensson BO, Arthur JG, Arnadottir GA, Sulem G, Halldorsson BV, Gunnarsson B, Halldorsson GH, Stefansson OA, Oskarsson GR, Deaton AM, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Onundarson PT, Gislason D, Gislason T, Ludviksson BR, Ludviksdottir D, Olafsdottir TA, Rafnar T, Masson G, Zink F, Bjornsdottir G, Magnusson OT, Bjornsdottir US, Thorleifsson G, Norddahl GL, Gudbjartsson DF, Thorsteinsdottir U, Jonsdottir I, Sulem P, Stefansson K (2019) A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nat Genet 51(2):267–276. https://doi.org/10.1038/s41588-018-0314-6 Bohman A, Juodakis J, Oscarsson M, Bacelis J, Bende M, Torinsson Naluai Å (2017) A family-based genome-wide association study of chronic rhinosinusitis with nasal polyps implicates several genes in the disease pathogenesis. PLoS One 12(12):e0185244. https://doi.org/10.1371/journal.pone.0185244 Hopkins C (2019) Chronic rhinosinusitis with nasal polyps. N Engl J Med 381(1):55–63. https://doi.org/10.1056/NEJMcp1800215 Iber C, Ancoli-Israel S, Chesson A, Quan S (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American academy of sleep medicine, Westchester Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C (2007) The visual scoring of sleep in adults. Journal of clinical sleep medicine 3(2):121–131 Li X, Fu Z, Xu H, Zou J, Zhu H, Li Z, Su K, Huai D, Yi H, Guan J, Yin S (2020) Influence of multiple apolipoprotein A-I and B genetic variations on insulin resistance and metabolic syndrome in obstructive sleep apnea. Nutr Metabol 17:83. https://doi.org/10.1186/s12986-020-00501-8 Burgess S, Small DS, Thompson SG (2017) A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res 26(5):2333–2355. https://doi.org/10.1177/0962280215597579 Rappai M, Collop N, Kemp S, deShazo R (2003) The nose and sleep-disordered breathing: what we know and what we do not know. Chest 124(6):2309–2323. https://doi.org/10.1378/chest.124.6.2309 Sukato DC, Abramowitz JM, Boruk M, Goldstein NA, Rosenfeld RM (2018) Endoscopic sinus surgery improves sleep quality in chronic rhinosinusitis: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 158(2):249–256. https://doi.org/10.1177/0194599817737977 DeConde AS, Mace JC, Bodner T, Hwang PH, Rudmik L, Soler ZM, Smith TL (2014) SNOT-22 quality of life domains differentially predict treatment modality selection in chronic rhinosinusitis. Int Forum Allergy Rhinol 4(12):972–979. https://doi.org/10.1002/alr.21408 Nguyen DT, Arous F, Gallet P, Felix-Ravelo M, Nguyen-Thi PL, Rumeau C, Jankowski R (2017) Sinonasal symptom-related sleep disorders before and after surgery for nasal polyposis. Rhinology 55(3):262–268. https://doi.org/10.4193/Rhin16.016 Motamedi V, Kanefsky R, Matsangas P, Mithani S, Jeromin A, Brock MS, Mysliwiec V, Gill J (2018) Elevated tau and interleukin-6 concentrations in adults with obstructive sleep apnea. Sleep Med 43:71–76. https://doi.org/10.1016/j.sleep.2017.11.1121 Kao LT, Hung SH, Lin HC, Liu CK, Huang HM, Wu CS (2016) Obstructive sleep apnea and the subsequent risk of chronic rhinosinusitis: a population-based study. Sci Rep 6:20786. https://doi.org/10.1038/srep20786 Nakata S, Noda A, Yagi H, Yanagi E, Mimura T, Okada T, Misawa H, Nakashima T (2005) Nasal resistance for determinant factor of nasal surgery in CPAP failure patients with obstructive sleep apnea syndrome. Rhinology 43(4):296–299 Nakata S, Noda A, Yasuma F, Morinaga M, Sugiura M, Katayama N, Sawaki M, Teranishi M, Nakashima T (2008) Effects of nasal surgery on sleep quality in obstructive sleep apnea syndrome with nasal obstruction. Am J Rhinol 22(1):59–63. https://doi.org/10.2500/ajr.2008.22.3120 Jiang S, Dong Z, Zhu D, Yang Z (2003) Local tissue hypoxia and formation of nasal polyps. Chin Med J 116(2):243–247 Khalmuratova R, Lee M, Mo JH, Jung Y, Park JW, Shin HW (2018) Wogonin attenuates nasal polyp formation by inducing eosinophil apoptosis through HIF-1α and survivin suppression. Sci Rep 8(1):6201. https://doi.org/10.1038/s41598-018-24356-5 Shin HW, Cho K, Kim DW, Han DH, Khalmuratova R, Kim SW, Jeon SY, Min YG, Lee CH, Rhee CS, Park JW (2012) Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med 185(9):944–954. https://doi.org/10.1164/rccm.201109-1706OC Schröder PC, Casaca VI, Illi S, Schieck M, Michel S, Böck A, Roduit C, Frei R, Lluis A, Genuneit J, Pfefferle P, Roponen M, Weber J, Braun-Fahrländer C, Riedler J, Lauener R, Vuitton DA, Dalphin JC, Pekkanen J, von Mutius E, Kabesch M, Schaub B (2016) IL-33 polymorphisms are associated with increased risk of hay fever and reduced regulatory T cells in a birth cohort. Pediatric allergy and immunology 27(7):687–695. https://doi.org/10.1111/pai.12597 Chen A, Zhao H, Wang J, Zhang R, Liu J, Zhao X, Li C, Jia X, Li X, Lin Y, Guo M, Li S, Liu C, Li Y, Liu S (2020) Haplotype analysis of candidate genes involved in inflammation and oxidative stress and the susceptibility to preeclampsia. J Immunol Res 2020:4683798–4683711. https://doi.org/10.1155/2020/4683798 Zhan M, Wang H, Xu SW, Yang LH, Chen W, Zhao SX, Shen H, Liu Q, Yang RM, Wang J (2019) Variants in oxidative stress-related genes affect the chemosensitivity through Nrf2-mediated signaling pathway in biliary tract cancer. EBioMedicine 48:143–160. https://doi.org/10.1016/j.ebiom.2019.08.037 Du XH, Dai XX, Xia Song R, Zou XZ, Yan Sun W, Mo XY, Lu Bai G, Xiong YM (2012) SNP and mRNA expression for glutathione peroxidase 4 in Kashin-Beck disease. Br J Nutr 107(2):164–169. https://doi.org/10.1017/s0007114511002704