Multiple fibers of del Pezzo fibrations
Tóm tắt
Từ khóa
Tài liệu tham khảo
V. Alexeev, “General Elephants of Q-Fano 3-folds,” Compos. Math. 91(1), 91–116 (1994).
P. Griffiths and J. Harris, Principles of Algebraic Geometry (J. Wiley & Sons, New York., 1978), Pure Appl. Math.
P. Hacking and Yu. Prokhorov, “Degenerations of del Pezzo Surfaces. I,” arXiv:math.AG/0509529.
F. Hidaka and K. Watanabe, “Normal Gorenstein Surfaces with Ample Anti-canonical Divisor,” Tokyo J. Math. 4(2), 319–330 (1981).
Y. Kawamata, “Crepant Blowing-up of 3-Dimensional Canonical Singularities and Its Application to Degenerations of Surfaces,” Ann. Math., Ser. 2, 127(1), 93–163 (1988).
Y. Kawamata, “On Fujita’s Freeness Conjecture for 3-folds and 4-folds,” Math. Ann. 308(3), 491–505 (1997).
Y. Kawamata, “Subadjunction of Log Canonical Divisors for a Subvariety of Codimension 2,” in Birational Algebraic Geometry, Baltimore, MD, 1996 (Am. Math. Soc., Providence, RI, 1997), Contemp. Math. 207, pp. 79–88.
Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the Minimal Model Problem,” in Algebraic Geometry, Sendai, 1985 (North-Holland, Amsterdam, 1987), Adv. Stud. Pure Math. 10, pp. 283–360.
K. Kodaira, “On the Structure of Compact Complex Analytic Surfaces. I,” Am. J. Math. 86, 751–798 (1964).
Flips and Abundance for Algebraic Threefolds, Ed. by J. Kollár (Soc. Math. France, Paris, 1992), Astérisque 211.
J. Kollár and N. I. Shepherd-Barron, “Threefolds and Deformations of Surface Singularities,” Invent. Math. 91(2), 299–338 (1988).
S. Mori, “Flip Theorem and the Existence of Minimal Models for 3-folds,” J. Am. Math. Soc. 1(1), 117–253 (1988).
M. Miyanishi and D. Q. Zhang, “Gorenstein Log del Pezzo Surfaces of Rank One,” J. Algebra 118(1), 63–84 (1988).
M. Miyanishi and D. Q. Zhang, “Gorenstein Log del Pezzo Surfaces. II,” J. Algebra 156(1), 183–193 (1993).
N. Nakayama, “Hodge Filtrations and the Higher Direct Images of Canonical Sheaves,” Invent. Math. 85(1), 217–221 (1986).
M. Reid, “Young Person’s Guide to Canonical Singularities,” in Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) (Am. Math. Soc., Providence, RI, 1987), Part 1, Proc. Symp. Pure Math. 46, pp. 345–414.
V. V. Shokurov, “3-fold Log Flips,” Izv. Ross. Akad. Nauk, Ser. Mat. 56(1), 105–203 (1992) [Russ. Acad. Sci., Izv. Math. 40, 95–202 (1993)].