Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii

Aquatic Toxicology - Tập 110 - Trang 214-224 - 2012
Holger Nestler1,2, Ksenia J. Groh1, René Schönenberger1, Renata Behra1, Kristin Schirmer1,2,3, Rik I.L. Eggen1,2, Marc J.-F. Suter1,2
1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
2ETH Zurich, Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics, Universitaetstrasse 16, 8092 Zurich, Switzerland
3EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland

Tài liệu tham khảo

Adler, 2007, Flow cytometry as a tool to study phytotoxic modes of action, Environ. Toxicol. Chem., 26, 297, 10.1897/06-1636R.1 Altenburger, 2008, Bioassays with unicellular algae: deviations from exponential growth and its implications for toxicity test results, J. Environ. Qual., 37, 16, 10.2134/jeq2006.0556 Amondham, 2006, Paraquat adsorption, degradation, and remobilization in tropical soils of Thailand, J. Environ. Sci. Health B, 41, 485, 10.1080/03601230600701635 Arnon, 1949, Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 24, 1, 10.1104/pp.24.1.1 2009 Bartosz, 2006, Use of spectroscopic probes for detection of reactive oxygen species, Clin. Chim. Acta, 368, 53, 10.1016/j.cca.2005.12.039 Cid, 2008, Alteration of photosynthesis related parameters of Chlamydomonas moewusii stressed by paraquat, Curr. Top. Toxicol., 5, 11 Dewez, 2005, Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus, Aquat. Toxicol., 74, 150, 10.1016/j.aquatox.2005.05.007 Fischer, 2010, Multiple stressor effects of high light irradiance and photosynthetic herbicides on growth and survival of the green alga Chlamydomonas reinhardtii, Environ. Toxicol. Chem., 29, 2211, 10.1002/etc.264 Genty, 1989, The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 990, 87, 10.1016/S0304-4165(89)80016-9 Geoffroy, 2004, Comparison of different physiological parameter responses in Lemna minor and Scenedesmus obliquus exposed to herbicide flumioxazin, Environ. Pollut., 131, 233, 10.1016/j.envpol.2004.02.021 Grossman, 2004, Chlamydomonas reinhardtii in the landscape of pigments, Annu. Rev. Genet., 38, 119, 10.1146/annurev.genet.38.072902.092328 Harris, 2001, Chlamydomonas as a model organism, Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 363, 10.1146/annurev.arplant.52.1.363 Hess, 2000, Light-dependent herbicides: an overview, Weed Sci., 48, 160, 10.1614/0043-1745(2000)048[0160:LDHAO]2.0.CO;2 Hourmant, 2009, Effect of bentazon on growth and physiological responses of marine diatom: Chaetoceros gracilis, Toxicol. Mech. Methods, 19, 109, 10.1080/15376510802290892 Ibáñez, 1997, On-line determination of bipyridylium herbicides in water by HPLC, Chromatographia, 45, 402, 10.1007/BF02505592 Jäger, 2009, Hormesis – its relevance in phytotoxicology, 137 Jamers, 2009, Flow cytometric analysis of the cadmium-exposed green alga Chlamydomonas reinhardtii (Chlorophyceae), Eur. J. Phycol., 44, 541, 10.1080/09670260903118214 Jamers, 2010, Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers, Environ. Toxicol. Chem., 29, 893, 10.1002/etc.102 Juneau, 1999, Evidence for the rapid phytotoxicity and environmental stress evaluation using the PAM fluorometric method: importance and future application, Ecotoxicology, 8, 449, 10.1023/A:1008955819527 Juneau, 2007, Use of chlorophyll fluorescence as a tool for determination of herbicide toxic effect: review, Toxicol. Environ. Chem., 89, 609, 10.1080/02772240701561569 Kitajima, 1975, Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone, Biochim. Biophys. Acta, 376, 105, 10.1016/0005-2728(75)90209-1 Knauert, 2008, The role of reactive oxygen species in copper toxicity to two freshwater green algae, J. Phycol., 44, 311, 10.1111/j.1529-8817.2008.00471.x Laskowsky, 1995, Some good reasons to ban the use of NOEC, LOEC and related concepts in ecotoxicology, Oikos, 73, 140, 10.2307/3545738 Le Faucheur, 2005, Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus, Environ. Toxicol. Chem., 24, 1731, 10.1897/04-394R.1 LeBel, 1992, Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress, Chem. Res. Toxicol., 5, 227, 10.1021/tx00026a012 Lichtenthaler, 1987, Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 148, 350, 10.1016/0076-6879(87)48036-1 Maxwell, 2000, Chlorophyll fluorescence – a practical guide, J. Exp. Bot., 51, 659, 10.1093/jexbot/51.345.659 Moreland, 1980, Mechanism of action of herbicides, Annu. Rev. Plant Physiol., 31, 597, 10.1146/annurev.pp.31.060180.003121 Nendza, 2006, Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles, Environ. Sci. Pollut. Res., 13, 192, 10.1065/espr2006.01.013 Neuwoehner, 2008, QSAR analysis and specific endpoints for classifying the physiological modes of action of biocides in synchronous green algae, Aquat. Toxicol., 90, 8, 10.1016/j.aquatox.2008.07.010 Nyberg, 1989, Growth and ATP levels in Porphyridium purpureum (Rhodophyceae, Bangiales) cultured in the presence of surfactants, Eur. J. Phycol., 24, 91, 10.1080/00071618900650081 Pimentel, 1995, Amounts of pesticides reaching target pests: environmental impacts and ethics, J. Agric. Environ. Ethics, 8, 17, 10.1007/BF02286399 Porra, 1989, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and chlorophyll b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochim. Biophys. Acta, 975, 384, 10.1016/S0005-2728(89)80347-0 Prado, 2009, Comparison of the sensitivity of different toxicity test endpoints in a microalga exposed to the herbicide paraquat, Environ. Int., 35, 240, 10.1016/j.envint.2008.06.012 Ralph, 2007, Use of fluorescence-based ecotoxicological bioassays in monitoring toxicants and pollution in aquatic systems: review, Toxicol. Environ. Chem., 89, 589, 10.1080/02772240701561593 Reboud, 2002, Response of Chlamydomonas reinhardtii to herbicides: negative relationship between toxicity and water solubility across several herbicide families, Bull. Environ. Contam. Toxicol., 69, 554, 10.1007/s00128-002-0097-3 Rioboo, 2002, Physiological response of freshwater microalga (Chlorella vulgaris) to triazine and phenylurea herbicides, Aquat. Toxicol., 59, 225, 10.1016/S0166-445X(01)00255-7 Rumeau, 2007, Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response, Plant Cell Environ., 30, 1041, 10.1111/j.1365-3040.2007.01675.x Sandmann, 1984, Inhibition of phytoene desaturase – the mode of action of certain bleaching herbicides, Z. Naturforsch., 39c, 443, 10.1515/znc-1984-0528 Schreiber, 2007, Methodology and evaluation of a highly sensitive algae toxicity test based on multiwell chlorophyll fluorescence imaging, Biosens. Bioelectron., 22, 2554, 10.1016/j.bios.2006.10.018 Szivák, 2009, Metal-induced reactive oxygen species production in Chlamydomonas reinhardtii (Chlorophyceae), J. Phycol., 45, 427, 10.1111/j.1529-8817.2009.00663.x Tischer, 1977, Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport, Biochim. Biophys. Acta, 460, 113, 10.1016/0005-2728(77)90157-8 Wakabayashi, 2004, Phytotoxic sites of action for molecular design of modern herbicides (part 1): the photosynthetic electron transport chain, Weed Biol. Manag., 4, 8, 10.1111/j.1445-6664.2003.00118.x Wightwick, 2007, Pesticide residues in Victorian waterways: a review, Australas. J. Ecotoxicol., 13, 91