Multiple elements of soil biodiversity drive ecosystem functions across biomes

Nature Ecology and Evolution - Tập 4 Số 2 - Trang 210-220
Manuel Delgado‐Baquerizo1, Peter B. Reich2, Chanda Trivedi2, David J. Eldridge3, Sebastián Abades4, Fernando D. Alfaro4, Felipe Bastida5, Asmeret Asefaw Berhe6, Nick A. Cutler7, Antonio Gallardo1, Laura García‐Velázquez1, Stephen C. Hart6, Patrick E. Hayes8, Ji‐Zheng He9, Zeng‐Yei Hseu10, Hang‐Wei Hu9, Martín Kirchmair11, Sigrid Neuhauser11, Cecilia A. Pérez12, Sasha C. Reed13, Fernanda Santos6, Benjamin W. Sullivan14, Pankaj Trivedi15, Juntao Wang2, Luis Weber‐Grullon16, Mark A. Williams17, Brajesh K. Singh18
1Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
2Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
3School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
4GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide, Santiago, Chile
5Department of Soil and Water Conservation, Campus Universitario de Espinardo, CEBAS-CSIC, Murcia, Spain
6Department of Life and Environmental Sciences and Sierra Nevada Research Institute, University of California Merced, Merced, CA, USA
7School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, UK
8School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
9Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, China
10Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
11Institute of Microbiology, University of Innsbruck, Innsbruck, Austria
12Instituto de Ecología y Biodiversidad, Las Palmeras, Santiago, Chile
13US Geological Survey, Southwest Biological Science Center, Moab, UT, USA.
14Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
15Microbiome Cluster and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
16Global Drylands Center, Arizona State University, Tempe, AZ, USA
17School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
18Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Holzman, D. C. Accounting for nature’s benefits: the dollar value of ecosystem services. Environ. Health Perspect. 120, a152–a157 (2012).

Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–70 (2014).

Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl Acad. Sci. USA 109, 1159–1164 (2012).

Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–11 (2014).

Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).

Troudet, J. et al. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).

Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

Bradford, M. A. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition. Proc. Natl Acad. Sci. USA 111, 14478–14483 (2014).

Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–9 (2016).

Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl Acad. Sci. USA 102, 1519–24 (2005).

García-Palacios, P. et al. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–53 (2013).

Byrnes, J. E. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Meth. Ecol. Evol. 5, 111–124 (2014).

Geisen, S. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists. Soil Biol. Biochem. 102, 22–25 (2016).

Bonkowski, M. Protozoa and plant growth. New Phytol. 162, 617–631 (2004).

Menezes, A. B. et al. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ. Microbiol. 17, 2677–2689 (2015).

Barberán, A. et al. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012).

de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).

Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).

Guimerà, R. & Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

Jens, M. & Olesen, J. M. et al. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Proc. R. Soc. B 364, 1781–1787 (2009).

Gotelli, N. J. & Colwell, R. K. in Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran, A. E. & McGill, B. J.) 39–54 (Oxford Univ. Press, 2011).

Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–19 (2013).

Delgado‐Baquerizo, M. et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J. Ecol. 104, 936–946 (2016).

Banerjee S., Schlaeppi K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A. & Bodegom, P. M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

Kettler, T. A. et al. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc.Am. J 65, 849–852 (2001).

Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–5 (2012).

Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B 281, 1795 (2014).

Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460 (2010).

Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

Guillou, L. et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, 597–604 (2013).

Glassman S. I. & Martiny J. B. H. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere 3, e00148-18 (2018).

Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fung. Ecol. 20, 241–248 (2016).

Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 81, e50961 (2013).

Campbell, C. D. et al. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Env. Microbiol. 69, 3593–3599 (2013).

Hu, H.-W. et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Envir. Microbiol. 20, 3186–3200 (2018).

Bastida, F. et al. Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol. Biochem. 65, 12–21 (2013).

Derrien, D. et al. Does the addition of labile substrate destabilise old soil organic matter? Soil Biol. Biochem. 76, 149–160 (2014).

Hopkins, F. M. et al. Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biol. Biochem. 76, 57–69 (2014).

Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).

Wolf, D. C. et al. Influence of sterilization methods on selected soil microbiological, physical, and chemical properties. J. Environ. Qual. 18, 39–44 (1989).

Lotrario, J. B. et al. Effects of sterilization methods on the physical characteristics of soil: implications for sorption isotherm analyses. Bull. Environ. Contam. Toxicol. 54, 668–675 (1995).

Csárdi, G. igraph, network analysis and visualization. R package version 1.2.2. R package (2018).

Watson, C. G. brainGraph, graph theory analysis of brain MRI data. R package version 2.2.0 (2018).

Delgado-Baquerizo, M. et al. Data from: Multiple elements of soil biodiversity drive ecosystem functions across biomes. Figshare https://doi.org/10.6084/m9.figshare.9976556 (2020).