Multiple carrier-transfer pathways in a flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure for enhanced photocatalytic hydrogen production

Nanoscale - Tập 10 Số 16 - Trang 7860-7870
Dandan Ma1,2,3,4,5, Jian‐Wen Shi1,2,6,4,5, Yajun Zou1,2,3,4,5, Zhaoyang Fan1,2,3,4,5, Jinwen Shi7,8,9,4,5, Linhao Cheng1,2,3,4,5, Diankun Sun1,2,3,4,5, Zeyan Wang7,10,11,6, Chunming Niu1,2,3,4,5
1Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2School of Electrical Engineering
3State Key Laboratory of Electrical Insulation and Power Equipment
4Xi’an 710049
5Xi’an Jiaotong University
6State Key Laboratory of Crystal Materials, Shandong University, Jinan, China
7China
8International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, Xi'an 710049, China
9State Key Laboratory of Multiphase Flow in Power Engineering (MFPE)
10Jinan
11Shandong University

Tóm tắt

A novel flower-like In2S3/CdIn2S4/In2O3 ternary heterostructure is rationally constructed for the first time, and it shows significantly enhanced photocatalytic H2 production.

Từ khóa


Tài liệu tham khảo

Song, 2017, Energy Environ. Sci., 10, 225, 10.1039/C6EE02414A

Wang, 2017, Nano Energy, 37, 1, 10.1016/j.nanoen.2017.04.050

Zhao, 2015, ACS Sustainable Chem. Eng., 3, 969, 10.1021/acssuschemeng.5b00102

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Sakurai, 2016, Chem. Commun., 52, 13612, 10.1039/C6CC08319F

Ide, 2016, Angew. Chem., Int. Ed., 55, 3600, 10.1002/anie.201510000

Pan, 2015, J. Phys. Chem. C, 119, 7184, 10.1021/jp512797t

Gomathisankar, 2013, ACS Sustainable Chem. Eng., 1, 982, 10.1021/sc400061w

Chanu, 2017, J. Phys. Chem. C, 121, 9077, 10.1021/acs.jpcc.7b02232

Ye, 2016, ACS Appl. Mater. Interfaces, 8, 13879, 10.1021/acsami.6b01850

Zou, 2017, ChemCatChem, 9, 3752, 10.1002/cctc.201700542

Du, 2016, RSC Adv., 6, 74394, 10.1039/C6RA10170D

Yue, 2017, Appl. Catal., B, 201, 202, 10.1016/j.apcatb.2016.08.028

Ma, 2017, Nano Energy, 39, 183, 10.1016/j.nanoen.2017.06.047

Meng, 2014, ACS Appl. Mater. Interfaces, 6, 4081, 10.1021/am4056358

Zhang, 2015, J. Colloid Interface Sci., 457, 18, 10.1016/j.jcis.2015.06.008

Yin, 2012, Inorg. Chem., 51, 6529, 10.1021/ic300005c

He, 2016, ACS Nano, 10, 5578, 10.1021/acsnano.6b02346

Zhang, 2015, Appl. Surf. Sci., 337, 27, 10.1016/j.apsusc.2015.02.059

Zhang, 2016, J. Phys. Chem. C, 120, 19113, 10.1021/acs.jpcc.6b03618

Lei, 2014, J. Am. Chem. Soc., 136, 6826, 10.1021/ja501866r

Chen, 2016, J. Mol. Catal. A: Chem., 414, 27, 10.1016/j.molcata.2015.12.023

Hou, 2017, Adv. Energy Mater., 1701114

Yan, 2017, Appl. Catal., B, 202, 84, 10.1016/j.apcatb.2016.09.017

Li, 2017, Chem. Eng. J., 321, 366, 10.1016/j.cej.2017.03.139

Yin, 2016, ACS Appl. Mater. Interfaces, 8, 23133, 10.1021/acsami.6b07754

Torabi, 2015, J. Phys. Chem. Lett., 6, 2075, 10.1021/acs.jpclett.5b00687

Jo, 2015, ACS Appl. Mater. Interfaces, 7, 17138, 10.1021/acsami.5b03935

Ye, 2015, ACS Catal., 5, 6973, 10.1021/acscatal.5b02185

Yang, 2015, J. Phys. Chem. C, 119, 27234, 10.1021/acs.jpcc.5b08016

Hou, 2013, Phys. Chem. Chem. Phys., 15, 15660, 10.1039/c3cp51857d

Zhu, 2008, J. Phys. Chem. C, 112, 15285, 10.1021/jp804768w

Ma, 2017, ACS Appl. Mater. Interfaces, 9, 25377, 10.1021/acsami.7b08407

Li, 2016, ACS Appl. Mater. Interfaces, 8, 2111, 10.1021/acsami.5b10613

Zhang, 2017, ACS Appl. Mater. Interfaces, 9, 21738, 10.1021/acsami.7b02473

Swain, 2017, ACS Omega, 2, 3745, 10.1021/acsomega.7b00492

Amalnerkar, 1989, J. Mater. Sci. Lett., 8, 862, 10.1007/BF01730162

Maliki, 2003, Appl. Surf. Sci., 205, 65, 10.1016/S0169-4332(02)01082-6

Abe, 2012, Appl. Surf. Sci., 258, 8090, 10.1016/j.apsusc.2012.04.177

Seminovski, 2012, Appl. Phys. Lett., 100, 102112, 10.1063/1.3692780

Song, 2017, Nanoscale, 9, 6296, 10.1039/C7NR01170A

Mumtaz, 2016, ACS Appl. Mater. Interfaces, 8, 9037, 10.1021/acsami.5b10147

Malashchonak, 2013, Beilstein J. Nanotechnol., 4, 255, 10.3762/bjnano.4.27

Xiong, 2002, J. Solid State Chem., 166, 336, 10.1006/jssc.2002.9598

Kuang, 2017, ACS Omega, 2, 852, 10.1021/acsomega.6b00507

Bao, 2015, Chem. – Eur. J., 21, 12728, 10.1002/chem.201501595

Ghazzal, 2014, Beilstein J. Nanotechnol., 5, 68, 10.3762/bjnano.5.6

Mukhopadhyay, 2015, Phys. Chem. Chem. Phys., 17, 20407, 10.1039/C5CP02689J

Kalpana, 2016, RSC Adv., 6, 4227, 10.1039/C5RA16242D

Dutta, 2017, Ind. Eng. Chem. Res., 56, 4768, 10.1021/acs.iecr.7b00107

Shi, 2012, J. Mol. Catal. A: Chem., 356, 53, 10.1016/j.molcata.2012.01.001

Xie, 2012, Langmuir, 28, 10558, 10.1021/la3013624

Yang, 2013, Phys. Chem. Chem. Phys., 15, 12688, 10.1039/c3cp51722e

Wang, 2016, Phys. Chem. Chem. Phys., 18, 12175, 10.1039/C6CP00209A

Liu, 2014, Nanoscale, 6, 7193, 10.1039/c4nr01227e

Vaishnav, 2014, RSC Adv., 4, 47637, 10.1039/C4RA08561B

Zhao, 2015, RSC Adv., 5, 6494, 10.1039/C4RA13203C

Chouhan, 2016, Int. J. Hydrogen Energy, 41, 2298, 10.1016/j.ijhydene.2015.11.019

Ranjith, 2016, Catal. Today, 278, 271, 10.1016/j.cattod.2016.05.011

Shang, 2014, ACS Catal., 4, 954, 10.1021/cs401025u

Boltersdorf, 2016, Chem. Mater., 28, 8876, 10.1021/acs.chemmater.6b02003

Zeng, 2014, J. Power Sources, 247, 545, 10.1016/j.jpowsour.2013.09.015

Batabyal, 2016, Cryst. Growth Des., 16, 2231, 10.1021/acs.cgd.6b00050

Tien, 2016, RSC Adv., 6, 12561, 10.1039/C5RA24370J