Multiple approach to model unpaired spin density effects in H-ZSM5 zeolite with extra-framework O atom: H-abstraction reaction from methane

Computational and Theoretical Chemistry - Tập 1074 - Trang 9-18 - 2015
Maria Rutigliano1, Nico Sanna2, Amedeo Palma3
1CNR-NANOTEC, Istituto di Nanotecnologia, Via Amendola 122/d, 70126 Bari, Italy
2CINECA, Via dei Tizii 6/b, 00185 Rome, Italy
3CNR-ISMN, Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km 29.3, UOS Montelibretti, Monterotondo S. (RM), Italy

Tài liệu tham khảo

Smit, 2008, Towards a molecular understanding of shape selectivity, Nature, 451, 671, 10.1038/nature06552 Santen, 1995, Reactivity theory of zeolitic Broensted acidic sites, Chem. Rev., 95, 637, 10.1021/cr00035a008 Čejka, 2012, Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems, Catal. Today, 179, 2, 10.1016/j.cattod.2011.10.006 Lunsford, 2000, Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century, Catal. Today, 63, 165, 10.1016/S0920-5861(00)00456-9 Ciobȋcǎ, 2000, A DFT study of transition states for C–H activation on the Ru(0001) surface, J. Phys. Chem. B, 104, 3364, 10.1021/jp993314l Zazza, 2011, Dispersion energy effects on methane interaction within zeolite straight micropores: a computational investigation, Comput. Theor. Chem., 967, 191, 10.1016/j.comptc.2011.04.020 Woertink, 2009, [Cu2O]2+ core in Cu–ZSM-5, the active site in the oxidation of methane to methanol, PNAS, 106, 18908, 10.1073/pnas.0910461106 Ding, 2008, Methane activation over Ag-exchanged ZSM-5 zeolites: a theoretical study, Appl. Surf. Sci., 254, 4944, 10.1016/j.apsusc.2008.01.137 Gabrienko, 2013, Methane activation and transformation on Ag/H-ZSM-5 zeolite studied with solid-state NMR, J. Phys. Chem. C, 117, 7690, 10.1021/jp4006795 Yang, 2009, First-principle studies on the exceptionally active triplet oxygen species in microporous zeolite materials: reservation and catalysis, J. Photochem. Photobiol. A, 202, 122, 10.1016/j.jphotochem.2008.12.010 Luntz, 1980, The chemical dynamics of the reactions of O(3P) with saturated hydrocarbons. II. Theoretical model, J. Chem. Phys., 72, 5851, 10.1063/1.439109 Yan, 2004, Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials, J. Chem. Phys., 120, 9253, 10.1063/1.1705574 Zhang, 2005, How active is the bend excitation of methane in the reaction with O(3P), J. Phys. Chem. A, 109, 6791, 10.1021/jp052963w Zhang, 2011, Crossed-beams studies of the dynamics of the h-atom abstraction reaction, O(3P)+CH4⇒OH+CH3, at hyperthermal collision energies, J. Phys. Chem. A, 115, 10894, 10.1021/jp207137t González, 1999, Ab initio ground potential energy surface and quasiclassical trajectory study of the O (1D)+CH4 (X 1A1)→OH (X 2Π)+CH3 (X 2A2″) reaction dynamics, J. Chem. Phys., 111, 8913, 10.1063/1.480236 Arai, 1994, Ab initio potential surfaces for the atomic oxygen(1D)+methane reaction, J. Phys. Chem., 98, 12, 10.1021/j100052a004 Dietl, 2012, Thermal hydrogen-atom transfer from methane: the role of radicals and spin states in oxo-cluster chemistry, Angew. Chem. Int. Ed., 51, 5544, 10.1002/anie.201108363 Fan, 2009, High-efficiency plasma catalytic removal of dilute benzene from air, J. Phys. D: Appl. Phys., 42, 225105, 10.1088/0022-3727/42/22/225105 Gori, 2008, d-alaninol adsorption on Cu(100): photoelectron spectroscopy and first-principles calculations, J. Phys. Chem. B, 112, 3963, 10.1021/jp710646a Zazza, 2007, Quasi-one-dimensional K-O chain in PTCDA thin films: evidence from first-principles calculations, Phys. Rev. Lett., 98, 046401, 10.1103/PhysRevLett.98.046401 Zazza, 2009, In silico characterization of a fourfold magnesium organometallic compound in PTCDA thin films, J. Phys. Chem. A, 113, 14813, 10.1021/jp904940e Meloni, 2003, Chemistry between magnesium and multiple molecules in tris-(8-hydroxyquinoline) aluminum films, J. Am. Chem. Soc., 125, 7808, 10.1021/ja029090t Fang, 2012, Prediction of CO2 adsorption properties in zeolites using force fields derived from periodic dispersion-corrected DFT calculations, J. Phys. Chem. C, 116, 10692, 10.1021/jp302433b Hansen, 2010, Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2:DFT study, J. Am. Chem Soc., 132, 11525, 10.1021/ja102261m Svelle, 2009, Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers, J. Am. Chem. Soc., 131, 816, 10.1021/ja807695p Wellendorff, 2012, Density functionals for surface science. Exchange-correlation model development with Bayesian error estimation, Phys. Rev. B, 85, 235149, 10.1103/PhysRevB.85.235149 Parr, 1989 Moellmann, 2010, Importance of London dispersion effects for the packing of molecular crystals: a case study for intramolecular stacking in bigthiophene derivative, Phys. Chem. Chem. Phys., 12, 8500, 10.1039/c003432k Nguyen, 2010, The role of van der Waals interactions in surface-supported supramolecular networks, Phys. Chem. Chem. Phys., 12, 992, 10.1039/B919102J Barone, 2009, Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases, J. Comput. Chem., 30, 934, 10.1002/jcc.21112 Marenich, 2010, Sorting out the relative contributions of electrostatic polarization, dispersion, and hydrogen bonding to solvatochromic shifts on vertical electronic excitation energies, J. Chem. Theor. Comput., 6, 2829, 10.1021/ct100267s Rimola, 2010, Physisorption of aromatic organic contaminants at the surface of hydrophobic/hydrophilic silica geosorbents: a B3LYP-D modeling study, Phys. Chem. Chem. Phys., 12, 6357, 10.1039/c000009d Solans-Monfort, 2010, Origin of the enhanced interaction of molecular hydrogen with extraframework Cu+ and FeO+ cations in zeolite hosts. A periodic DFT study, J. Phys. Chem. C, 114, 13926, 10.1021/jp104175n Grimme, 2004, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem., 25, 1463, 10.1002/jcc.20078 Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495 Giannozzi, 2009, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21, 395502 Henkelman, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 113, 9901, 10.1063/1.1329672 Sheppard, 2012, A generalized solid-state nudged elastic band method, J. Chem. Phys., 136, 074103, 10.1063/1.3684549 MFI Topology file, taken from the International Zeolite Association (IZA) structure database, <http://www.iza-online.org/>. Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Perdew, 1997, Erratum of generalized gradient approximation made simple, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396 Pasquarello, 1992, Ab initio molecular dynamics for d-electron systems: liquid copper at 1500K, Phys. Rev. Lett., 69, 1982, 10.1103/PhysRevLett.69.1982 Laasonen, 1993, Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials, Phys. Rev. B, 47, 10142, 10.1103/PhysRevB.47.10142 Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892 Martins, 1992, Structural and electronic properties of KnC60, Phys. Rev. B, 46, 1766, 10.1103/PhysRevB.46.1766 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc, Wallingford CT, 2009. Solans-Monfort, 2004, Electron hole formation in acidic zeolite catalysts, J. Chem. Phys., 121, 6034, 10.1063/1.1781122 Pacchioni, 2000, Theoretical description of hole localization in a quartz Al center: the importance of exact electron exchange, Phys. Rev. B, 63, 054102, 10.1103/PhysRevB.63.054102 Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913 Becke, 1993, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys., 98, 1372, 10.1063/1.464304 Ayala, 1997, A combined method for determining reaction paths, minima, and transition state geometries, J. Chem. Phys., 107, 375, 10.1063/1.474398 Hratchian, 2005, Finding minima, transition states, and following reaction pathways on ab initio potential energy surface, 195 Møller, 1934, Note on an approximation treatment for many-electron systems, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618 Head-Gordon, 1988, MP2 energy evaluation by direct methods, Chem. Phys. Lett., 153, 503, 10.1016/0009-2614(88)85250-3 Pople, 1987, Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys., 87, 5968, 10.1063/1.453520