Multiple approach to model unpaired spin density effects in H-ZSM5 zeolite with extra-framework O atom: H-abstraction reaction from methane
Tài liệu tham khảo
Smit, 2008, Towards a molecular understanding of shape selectivity, Nature, 451, 671, 10.1038/nature06552
Santen, 1995, Reactivity theory of zeolitic Broensted acidic sites, Chem. Rev., 95, 637, 10.1021/cr00035a008
Čejka, 2012, Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems, Catal. Today, 179, 2, 10.1016/j.cattod.2011.10.006
Lunsford, 2000, Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century, Catal. Today, 63, 165, 10.1016/S0920-5861(00)00456-9
Ciobȋcǎ, 2000, A DFT study of transition states for C–H activation on the Ru(0001) surface, J. Phys. Chem. B, 104, 3364, 10.1021/jp993314l
Zazza, 2011, Dispersion energy effects on methane interaction within zeolite straight micropores: a computational investigation, Comput. Theor. Chem., 967, 191, 10.1016/j.comptc.2011.04.020
Woertink, 2009, [Cu2O]2+ core in Cu–ZSM-5, the active site in the oxidation of methane to methanol, PNAS, 106, 18908, 10.1073/pnas.0910461106
Ding, 2008, Methane activation over Ag-exchanged ZSM-5 zeolites: a theoretical study, Appl. Surf. Sci., 254, 4944, 10.1016/j.apsusc.2008.01.137
Gabrienko, 2013, Methane activation and transformation on Ag/H-ZSM-5 zeolite studied with solid-state NMR, J. Phys. Chem. C, 117, 7690, 10.1021/jp4006795
Yang, 2009, First-principle studies on the exceptionally active triplet oxygen species in microporous zeolite materials: reservation and catalysis, J. Photochem. Photobiol. A, 202, 122, 10.1016/j.jphotochem.2008.12.010
Luntz, 1980, The chemical dynamics of the reactions of O(3P) with saturated hydrocarbons. II. Theoretical model, J. Chem. Phys., 72, 5851, 10.1063/1.439109
Yan, 2004, Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials, J. Chem. Phys., 120, 9253, 10.1063/1.1705574
Zhang, 2005, How active is the bend excitation of methane in the reaction with O(3P), J. Phys. Chem. A, 109, 6791, 10.1021/jp052963w
Zhang, 2011, Crossed-beams studies of the dynamics of the h-atom abstraction reaction, O(3P)+CH4⇒OH+CH3, at hyperthermal collision energies, J. Phys. Chem. A, 115, 10894, 10.1021/jp207137t
González, 1999, Ab initio ground potential energy surface and quasiclassical trajectory study of the O (1D)+CH4 (X 1A1)→OH (X 2Π)+CH3 (X 2A2″) reaction dynamics, J. Chem. Phys., 111, 8913, 10.1063/1.480236
Arai, 1994, Ab initio potential surfaces for the atomic oxygen(1D)+methane reaction, J. Phys. Chem., 98, 12, 10.1021/j100052a004
Dietl, 2012, Thermal hydrogen-atom transfer from methane: the role of radicals and spin states in oxo-cluster chemistry, Angew. Chem. Int. Ed., 51, 5544, 10.1002/anie.201108363
Fan, 2009, High-efficiency plasma catalytic removal of dilute benzene from air, J. Phys. D: Appl. Phys., 42, 225105, 10.1088/0022-3727/42/22/225105
Gori, 2008, d-alaninol adsorption on Cu(100): photoelectron spectroscopy and first-principles calculations, J. Phys. Chem. B, 112, 3963, 10.1021/jp710646a
Zazza, 2007, Quasi-one-dimensional K-O chain in PTCDA thin films: evidence from first-principles calculations, Phys. Rev. Lett., 98, 046401, 10.1103/PhysRevLett.98.046401
Zazza, 2009, In silico characterization of a fourfold magnesium organometallic compound in PTCDA thin films, J. Phys. Chem. A, 113, 14813, 10.1021/jp904940e
Meloni, 2003, Chemistry between magnesium and multiple molecules in tris-(8-hydroxyquinoline) aluminum films, J. Am. Chem. Soc., 125, 7808, 10.1021/ja029090t
Fang, 2012, Prediction of CO2 adsorption properties in zeolites using force fields derived from periodic dispersion-corrected DFT calculations, J. Phys. Chem. C, 116, 10692, 10.1021/jp302433b
Hansen, 2010, Quantum chemical modeling of benzene ethylation over H-ZSM-5 approaching chemical accuracy: a hybrid MP2:DFT study, J. Am. Chem Soc., 132, 11525, 10.1021/ja102261m
Svelle, 2009, Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers, J. Am. Chem. Soc., 131, 816, 10.1021/ja807695p
Wellendorff, 2012, Density functionals for surface science. Exchange-correlation model development with Bayesian error estimation, Phys. Rev. B, 85, 235149, 10.1103/PhysRevB.85.235149
Parr, 1989
Moellmann, 2010, Importance of London dispersion effects for the packing of molecular crystals: a case study for intramolecular stacking in bigthiophene derivative, Phys. Chem. Chem. Phys., 12, 8500, 10.1039/c003432k
Nguyen, 2010, The role of van der Waals interactions in surface-supported supramolecular networks, Phys. Chem. Chem. Phys., 12, 992, 10.1039/B919102J
Barone, 2009, Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases, J. Comput. Chem., 30, 934, 10.1002/jcc.21112
Marenich, 2010, Sorting out the relative contributions of electrostatic polarization, dispersion, and hydrogen bonding to solvatochromic shifts on vertical electronic excitation energies, J. Chem. Theor. Comput., 6, 2829, 10.1021/ct100267s
Rimola, 2010, Physisorption of aromatic organic contaminants at the surface of hydrophobic/hydrophilic silica geosorbents: a B3LYP-D modeling study, Phys. Chem. Chem. Phys., 12, 6357, 10.1039/c000009d
Solans-Monfort, 2010, Origin of the enhanced interaction of molecular hydrogen with extraframework Cu+ and FeO+ cations in zeolite hosts. A periodic DFT study, J. Phys. Chem. C, 114, 13926, 10.1021/jp104175n
Grimme, 2004, Accurate description of van der Waals complexes by density functional theory including empirical corrections, J. Comput. Chem., 25, 1463, 10.1002/jcc.20078
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Giannozzi, 2009, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 21, 395502
Henkelman, 2000, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys., 113, 9901, 10.1063/1.1329672
Sheppard, 2012, A generalized solid-state nudged elastic band method, J. Chem. Phys., 136, 074103, 10.1063/1.3684549
MFI Topology file, taken from the International Zeolite Association (IZA) structure database, <http://www.iza-online.org/>.
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Perdew, 1997, Erratum of generalized gradient approximation made simple, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396
Pasquarello, 1992, Ab initio molecular dynamics for d-electron systems: liquid copper at 1500K, Phys. Rev. Lett., 69, 1982, 10.1103/PhysRevLett.69.1982
Laasonen, 1993, Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials, Phys. Rev. B, 47, 10142, 10.1103/PhysRevB.47.10142
Vanderbilt, 1990, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41, 7892, 10.1103/PhysRevB.41.7892
Martins, 1992, Structural and electronic properties of KnC60, Phys. Rev. B, 46, 1766, 10.1103/PhysRevB.46.1766
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01, Gaussian Inc, Wallingford CT, 2009.
Solans-Monfort, 2004, Electron hole formation in acidic zeolite catalysts, J. Chem. Phys., 121, 6034, 10.1063/1.1781122
Pacchioni, 2000, Theoretical description of hole localization in a quartz Al center: the importance of exact electron exchange, Phys. Rev. B, 63, 054102, 10.1103/PhysRevB.63.054102
Becke, 1993, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913
Becke, 1993, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys., 98, 1372, 10.1063/1.464304
Ayala, 1997, A combined method for determining reaction paths, minima, and transition state geometries, J. Chem. Phys., 107, 375, 10.1063/1.474398
Hratchian, 2005, Finding minima, transition states, and following reaction pathways on ab initio potential energy surface, 195
Møller, 1934, Note on an approximation treatment for many-electron systems, Phys. Rev., 46, 618, 10.1103/PhysRev.46.618
Head-Gordon, 1988, MP2 energy evaluation by direct methods, Chem. Phys. Lett., 153, 503, 10.1016/0009-2614(88)85250-3
Pople, 1987, Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys., 87, 5968, 10.1063/1.453520