Multiple Sclerosis and Glutamate

Annals of the New York Academy of Sciences - Tập 993 Số 1 - Trang 229-275 - 2003
Anthony Groom1, Terence Smith1, Lechosław Turski2
1Eisai London Research Laboratories, University College London, Bernard Katz Building, Gower Street, London, United Kingdom
2Solvay Pharmaceuticals Research Laboratories, Weesp, The Netherlands

Tóm tắt

Abstract:Experimental autoimmune encephalomyelitis reproduces in rodents the features of multiple sclerosis, an immune‐mediated, disabling disorder of the human nervous system. No adequate therapy is available for multiple sclerosis, despite anti‐inflammatory, immunosuppressive, and immunomodulatory measures. Increasingly glutamate is implicated in the pathogenesis of neurodegenerative diseases. Here we (1) review changes in the glutamatergic system in multiple sclerosis and (2) reveal the effects of glutamate AMPA antagonists in acute and chronic rodent models of multiple sclerosis. Administration of structurally diverse competitive and non‐competitive AMPA antagonists reduces neurologic disability in rodents subjected to acute experimental autoimmune encephalomyelitis. In addition, AMPA antagonists are active in both the adoptive transfer and in chronic models of experimental autoimmune encephalomyelitis in rats and mice and affect both the acute and chronic relapsing phases. Moreover, short‐term therapy with AMPA antagonists leads to sustained benefit well into the progressive phases. These results imply that therapeutic strategies for multiple sclerosis should be complemented by glutamate AMPA antagonists to reduce neurologic disability.

Từ khóa


Tài liệu tham khảo

10.1016/0165-5728(88)90161-0

10.1016/S0165-5728(85)80035-7

Kerlero de Rosbo N., 1993, Reactivity to myelin antigens in multiple sclerosis, Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J. Clin. Invest., 92, 2602

Raine C.S., 1981, Multiple sclerosis, Oligodendrocyte survival and proliferation in an active established lesion. Lab. Invest., 45, 534

10.1111/j.1749-6632.1984.tb14791.x

Linington C., 1988, Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein, Am. J. Pathol., 130, 443

10.1136/jnnp.67.6.708

10.1016/0022-510X(91)90219-W

Charcot M., 1868, Histologie de la sclerose en plaques, Gaz. Hosp., 141, 554

10.1002/1531-8249(200012)48:6<893::AID-ANA10>3.0.CO;2-B

10.1136/jnnp.67.6.710

10.1093/brain/123.6.1174

10.1002/1531-8249(200003)47:3<391::AID-ANA20>3.0.CO;2-J

10.1093/brain/120.3.393

10.1002/(SICI)1098-1136(20000215)29:4<366::AID-GLIA7>3.0.CO;2-Y

10.1016/S0149-7634(89)80048-X

10.1093/brain/117.1.49

10.1212/WNL.54.1.236

10.1038/nm0298-187

10.1093/brain/121.1.103

10.1001/archneur.57.1.65

10.1046/j.1471-4159.2000.0740254.x

Clegg A., 2000, Disease‐modifying drugs for multiple sclerosis: a rapid and systematic review, Health Technol. Assess., 4, 1, 10.3310/hta4090

10.1016/S0022-510X(99)00304-4

10.1016/S1357-4310(99)01639-1

10.1002/1531-8249(199912)46:6<878::AID-ANA10>3.0.CO;2-Q

Paty D.W., 1993, Interferon beta‐1b is effective in relapsing‐remitting multiple sclerosis, II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNβ Multiple Sclerosis Study Group. Neurology, 43, 662

The IFNβ Multiple Sclerosis Study Group, 1993, Interferon beta‐1b is effective in relapsing‐remitting multiple sclerosis, I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology, 43, 655

10.1212/WNL.45.7.1277

10.1016/S0140-6736(98)10039-9

Simon J.H., 2000, A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta‐1a, Multiple Sclerosis Collaborative Research Group. Neurology, 55, 185

10.1212/WNL.51.3.682

10.1212/WNL.45.7.1268

10.1016/S0140-6736(96)09377-4

10.1007/s004150050066

10.1111/j.1600-0404.1997.tb00076.x

10.1097/00001756-199803090-00003

10.1016/S0304-3940(97)00840-9

10.1046/j.1365-2362.1997.2250774.x

10.1007/PL00007728

10.1177/014107688708000210

10.1038/71548

10.1002/ana.410350111

10.1093/brain/117.6.1311

Lassmann H. 1998. Pathology of multiple sclerosis.InMcAlpine's Multiple Sclerosis. A. Compston G. Ebers H. Lassmann et al. Eds.: 323‐358. Churchill Livingstone London.

10.1002/ana.410330203

10.1038/339620a0

10.1016/0896-6273(94)90277-1

10.1073/pnas.94.16.8830

10.1038/nm0398-291

10.1002/(SICI)1097-4547(19961115)46:4<427::AID-JNR4>3.0.CO;2-I

10.1046/j.1471-4159.1995.64062442.x

10.1073/pnas.95.17.10229

Losseff N.A., 1998, Measures of brain and spinal cord atrophy in multiple sclerosis, J. Neurol. Neurosurg. Psychiatr., 64, S102

10.1007/BF03401549

10.1126/science.8036512

10.1038/35097565

10.1016/0304-3940(89)90585-5

10.1097/00005072-199602000-00010

10.1007/s004150050552

10.1007/BF03160574

Shaw P.J. 1998. Excitotoxicity genetics and neurodegeneration in amyotrophic lateral sclerosis.InExcitatory Amino Acids: From Genes to Therapy. P.H. Seeburg I. Bresink & L. Turski Eds.: 65‐94. Springer Berlin.

10.1084/jem.58.1.39

Waksman B.H., 1959, Experimental allergic encephalomyelitis and the auto‐allergic diseases, Int. Arch. Allergy Appl. Immunol., 14, S1

Kojima K., 1997, Induction of experimental autoimmune encephalomyelitis by CD4+ T cells specific for an astrocyte protein, S100β, J. Neural. Transm., 49, S43

10.1006/jaut.1996.0020

10.1016/0165-5728(87)90003-8

10.1016/0022-510X(88)90105-0

Simmons R.D., 1982, Experimental autoimmune encephalomyelitis, An anatomically-based explanation of clinical progression in rodents. J. Neuroimmunol., 3, 307

10.1084/jem.169.2.431

Schmied M., 1993, Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis, Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am. J. Pathol., 143, 446

10.1046/j.1471-4159.1995.64031192.x

10.1111/j.1471-4159.1989.tb07351.x

10.1111/j.1471-4159.1980.tb03714.x

10.1002/(SICI)1098-1136(199705)20:1<79::AID-GLIA8>3.0.CO;2-0

10.1016/0165-5728(90)90060-Z

Bolton C., 1997, MK‐801 limits neurovascular dysfunction during experimental allergic encephalomyelitis, J. Pharmacol. Exp. Ther., 282, 397, 10.1016/S0022-3565(24)36794-1

10.1016/0022-510X(95)00339-4

10.1002/cne.903440307

10.1523/JNEUROSCI.20-03-01190.2000

10.1038/35058528

10.1007/s000180050488

10.1016/0304-3940(91)90559-C

10.1016/0304-3940(89)90702-7

Gong C., 2000, Inhibition of NAALADase protects neurons against glucose‐induced programmed cell death in models of diabetic neuropathy, Soc. Neurosci. (Abstr.), 26, 1135

10.1038/70971

Slusher B.S., 2000, NAALADase inhibition increases survival and delays clinical symptoms in an SOD transgenic model of ALS, Soc. Neurosci. Abstr., 26, 113

Wozniak K.M., 2000, NAALADase inhibition enhances behavioral and morphological recovery following sciatic nerve crush in mice, Soc. Neurosci. (Abstr.), 26, 1145

10.1038/249147a0

10.1042/bj1410243

10.1126/science.2154034

Tarnawa I., 1998, 2,3‐Benzodiazepine AMPA antagonists, Restor. Neurol. Neurosci., 13, 41

10.1038/349414a0

10.1073/pnas.95.18.10960

Paxinos G. & C. Watson. 1998. The Rat Brain in Stereotaxic Coordinates. Academic Press London.

Cruz‐Orive L.M., 1990, Recent stereological methods for cell biology: a brief survey, Am. J. Physiol., 258, L148

10.1126/science.283.5398.70

10.1002/(SICI)1096-9861(19970901)385:3<456::AID-CNE9>3.0.CO;2-2

10.1016/0022-510X(95)00076-E

10.1006/exnr.1999.7016

10.1016/S0896-8411(05)80052-6

10.1159/000237646

Mason D., 1990, The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat, Immunology, 70, 1

Tokarev D., 1997, Effect of central administration of the non‐NMDA receptor antagonist DNQX on ACTH and corticosterone release before and during immobilization stress, Meth. Find. Exp. Clin. Pharmacol., 19, 323

10.1016/S0002-9440(10)64684-6

10.1002/ana.410300604

Kreutzberg G.W. W.F. Blakemore & M.B. Graeber. 1997. Cellular pathology of the central nervous system.InGreenfield's Neuropathology. D.I. Graham & P.L. Lantos Eds.: 85‐156. Arnold London.

10.1038/71555

10.1523/JNEUROSCI.21-12-04237.2001

Humble J.G., 1956, Biological interaction between lymphocytes and other cells, Brit. J. Hæmat., 2, 183, 10.1111/j.1365-2141.1956.tb06700.x

Hughes D., 1968, Invasion of neurones in vitro by non immune lymphocytes, An electron microscopic study. Brit. J. Exp. Pathol., 49, 356

10.1007/BF01002719

10.1111/j.1750-3639.1999.tb00224.x

10.1111/j.1750-3639.1999.tb00226.x

10.1016/S0165-5728(99)00135-6

10.1126/science.7624779

10.1016/S0896-6273(00)80562-0

Bauer J., 2001, Destruction of neurons by cytotoxic T cells in Rasmussen's encephalitis, J. Neuroimmunol., 118, A140

10.1016/0022-510X(89)90144-5

10.1016/0006-8993(92)91589-7

10.1097/00019052-199906000-00008

Roger R.C., 2000, TNF, glutamate and neurodegeneration in the rat spinal cord, Soc. Neurosci. (Abstr.), 26, 1186

Villaroya H., 1996, Myelin‐induced experimental autoimmune encephalomyelitis in Lewis rats: tumour necrosis factor α levels in serum and cerebrospinal fluid, Immunohistochemical expression in glial cells and macrophages of optic nerve and spinal cord. J. Neuroimmunol., 64, 55

10.1016/0165-5728(88)90137-3

Fine S.M., 1996, Tumor necrosis factor α inhibits glutamate uptake by primary human astrocytes, Implications for pathogenesis of HIV-1 dementia. J. Biol. Chem., 271, 15303

10.1172/JCI12629

10.1002/ana.1077

10.1038/89490

10.1523/JNEUROSCI.20-01-00251.2000

10.1002/eji.1830270416

10.1111/j.1365-2990.1993.tb00443.x

10.1002/ana.410420211

10.1006/nbdi.2001.0414

10.1139/y99-076

10.1038/369744a0

10.1016/0165-5728(90)90019-J

10.1093/brain/124.6.1114

10.4049/jimmunol.166.2.936

10.1523/JNEUROSCI.21-15-05429.2001

10.1016/0165-3806(95)00081-N

10.1002/ana.410330202

10.1152/jn.2001.85.2.900