Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arbuckle, J.L. (1995).Amos Users' Guide. Small Waters, Chicago.
Bryk, A.S. & Raudenbush, S.W. (1992).Hierarchical Linear Models. Sage, Newbury Park.
Bryk, A.S., Raudenbush, S.W. & Congdon, R.T. (1996). Hierarchical Linear and Nonlinear Modeling with the HLM/2L and HLM/3L Programs.Scientific Software International, Chicago.
Dempster, A.P., Laird, N.M. & Rubin, D.B. (1 977). Maximum likelihood from inicomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B., 39, 1-38.
Ezzati-Rice, T.M., Johnson, W., Khare, M., Little, R.J.A., Rubin, D.B. & Schafer, J.L. (1995). A simulation study to evaluate the performance of model-based multiple imputations in NCHS health examination surveys.In Proceedings of the Annual Research Conference, pp. 257-266. Bureau of the Census, Washington, D.C.
Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. (Eds.). (1996). Markov (Chain Monte Carlo in Practice.Chapman & Hall, London.
Graham J.W., 1994, In Collins, L.& Seitz, L. (Eds.), NationalInstitute on Drug Abuse Research Monograph Series, 142, 13
Littell, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996).SASSystem,for Mixed Models. SAS Institute, Cary, NC.
Little, R.J.A. & Rubin, D.B. (1987). Statistzcal Analysis with Missing Data.J. Wiley & Sons, New York.
Neale, M.C. (1991).Mx: Statistical Modeling. Available from M.C. Neale, Box 3, Department of Human Genetics, Medical College of Virginia, Richmond, 'VA.
Schafer, J.L. (1 997b). Imputation of missing covariates under a multivariate Linear mixed model. Technical report 97-10, The Methodology Center, The Pennsylvania State University. Available at http://methcenter.psu.edu.