Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nhiều Khuyết Tật Miễn Dịch Ở Hai Bệnh Nhân Có Đột Biến Mới Trong Gen DOCK2 Dẫn Đến Nhiễm Trùng Lặp Lại Bao Gồm Cả Nhiễm Trùng Vắc Xin Virus Sống Giảm Độc Lực
Tóm tắt
Protein dedicator của cytokinesis 2 (DOCK2), một yếu tố trao đổi nucleotide guanine không điển hình (GEFs), là một thành viên của tiểu họ protein DOCKA. Sự thiếu hụt protein DOCK2 được đặc trưng bởi tình trạng lymphopenia khởi phát sớm, nhiễm trùng tái phát, và sự rối loạn chức năng tế bào lympho, điều này được phân loại là thiếu hụt miễn dịch phối hợp cùng với những bất thường về bạch cầu trung tính. Cách chữa duy nhất là cấy ghép tế bào gốc tạo máu. Tại đây, chúng tôi báo cáo hai bệnh nhân mang bốn đột biến DOCK2 mới liên quan đến nhiễm trùng tái phát bao gồm cả nhiễm trùng liên quan đến vắc xin virus sống attenuated. Tình trạng của bệnh nhân được cải thiện một phần nhờ điều trị triệu chứng hoặc tiêm immunoglobulin tĩnh mạch. Chúng tôi cũng xác nhận những khuyết tật trong sản xuất tế bào T ở tuyến ức và sự phát triển của tế bào T, cũng như cấu trúc thiên lệch bất thường của các phân nhóm tế bào T/B về các bộ TCR-Vβ. Ngoài ra, chúng tôi còn nhận thấy những khuyết tật của bạch cầu trung tính, sự suy giảm quá trình polymer hóa actin, và sự nội bào hóa BCR dưới sự kích hoạt của TCR/BCR. Cuối cùng, chúng tôi phát hiện rằng protein DOCK2 ảnh hưởng đến ái lực kháng thể mặc dù nồng độ immunoglobulin tổng thể trong huyết thanh vẫn bình thường. Những kết quả được báo cáo ở đây mở rộng phenotype lâm sàng, cơ sở dữ liệu đột biến DOCK2 gây bệnh, và các đặc điểm miễn dịch của những bệnh nhân thiếu hụt DOCK2.
Từ khóa
#DOCK2 #đột biến #thiếu hụt miễn dịch #tế bào T #bạch cầu trung tính #vắc xin virus sống giảm độc lựcTài liệu tham khảo
Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol. 2020;32(1):5–15. https://doi.org/10.1093/intimm/dxz067.
Hashim IF, Mokhtar AMA. Small Rho GTPases and their associated RhoGEFs mutations promote immunological defects in primary immunodeficiencies. Int J Biochem Cell Biol. 2021;137:106034. https://doi.org/10.1016/j.biocel.2021.106034.
Dobbs K, Dominguez Conde C, Zhang SY, Parolini S, Audry M, Chou J, et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N Engl J Med. 2015;372(25):2409–22. https://doi.org/10.1056/NEJMoa1413462.
Sharifinejad N, Sadri H, Kalantari A, Delavari S, Noohi A, Aminpour Y, et al. First patient in the Iranian Registry with novel DOCK2 gene mutation, presenting with skeletal tuberculosis, and review of literature. Allergy Asthma Clin Immunol. 2021;17(1):126. https://doi.org/10.1186/s13223-021-00631-5.
Arunachalam AK, Maddali M, Aboobacker FN, Korula A, George B, Mathews V, et al. Primary immunodeficiencies in India: molecular diagnosis and the role of next-generation sequencing. J Clin Immunol. 2021;41(2):393–413. https://doi.org/10.1007/s10875-020-00923-2.
Alosaimi MF, Shendi H, Beano A, Stafstrom K, El Hawary R, Meshaal S, et al. T-cell mitochondrial dysfunction and lymphopenia in DOCK2-deficient patients. J Allergy Clin Immunol. 2019;144(1):306-9 e2. https://doi.org/10.1016/j.jaci.2019.02.020
Alizadeh Z, Mazinani M, Shakerian L, Nabavi M, Fazlollahi MR. DOCK2 deficiency in a patient with hyper IgM phenotype. J Clin Immunol. 2018;38(1):10–2. https://doi.org/10.1007/s10875-017-0468-5.
Yang L, Jing Y, Wang W, Ying W, Lin L, Chang J, et al. DOCK2 couples with LEF-1 to regulate B cell metabolism and memory response. Biochem Biophys Res Commun. 2020;529(2):296–302. https://doi.org/10.1016/j.bbrc.2020.05.152.
Moens L, Gouwy M, Bosch B, Pastukhov O, Nieto-Patlan A, Siler U, et al. Human DOCK2 deficiency: report of a novel mutation and evidence for neutrophil dysfunction. J Clin Immunol. 2019;39(3):298–308. https://doi.org/10.1007/s10875-019-00603-w.
D’Astous-Gauthier K, Desjardins A, Marois L, Falcone EL, Chapdelaine H. DOCK2 deficiency diagnosed 18 years after hematopoietic stem cell transplantation. J Clin Immunol. 2021;41(6):1400–2. https://doi.org/10.1007/s10875-021-01040-4.
Terasawa M, Uruno T, Mori S, et al. Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration. PLoS One. 2012;7(9):e46277. https://doi.org/10.1371/journal.pone.0046277.
Ma X, Tan X, Yu B, Sun W, Wang H, Hu H, et al. DOCK2 regulates antifungal immunity by regulating RAC GTPase activity. Cell Mol Immunol. 2022;19(5):602–18. https://doi.org/10.1038/s41423-021-00835-0.
Gotoh K, Tanaka Y, Nishikimi A, Nakamura R, Yamada H, Maeda N, et al. Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. J Exp Med. 2010;207(4):721–30. https://doi.org/10.1084/jem.20091776.
Fukui Y, Hashimoto O, Sanui T, et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature. 2001;412(6849):826–31. https://doi.org/10.1038/35090591.
Dahlgren C, Bjornsdottir H, Sundqvist M, Christenson K, Bylund J. Measurement of respiratory burst products, released or retained, during activation of professional phagocytes. Methods Mol Biol. 2020;2087:301–24. https://doi.org/10.1007/978-1-0716-0154-9_22.
Yu L, Li W, Lv G, Sun G, Yang L, Chen J, et al. De novo somatic mosaicism of CYBB caused by intronic LINE-1 element insertion resulting in chronic granulomatous disease. J Clin Immunol. 2023;43(1):88–100. https://doi.org/10.1007/s10875-022-01347-w.
Wu J, Liu D, Tu W, Song W, Zhao X. T-cell receptor diversity is selectively skewed in T-cell populations of patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol. 2015;135(1):209–16. https://doi.org/10.1016/j.jaci.2014.06.025.
Yang L, Xue X, Zeng T, et al. Novel biallelic TRNT1 mutations lead to atypical SIFD and multiple immune defects [published correction appears in Genes Dis. 2020 Apr 09;7(3):485]. Genes Dis. 2020;7(1):128–37. https://doi.org/10.1016/j.gendis.2020.01.005.
Côté JF, Vuori K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 2007;17(8):383–93. https://doi.org/10.1016/j.tcb.2007.05.001.
Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16(13):1587–609. https://doi.org/10.1101/gad.1003302.
Côté JF, Motoyama AB, Bush JA, Vuori K. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling. Nat Cell Biol. 2005;7(8):797–807. https://doi.org/10.1038/ncb1280.
Kulkarni K, Yang J, Zhang Z, Barford D. Multiple factors confer specific Cdc42 and Rac protein activation by dedicator of cytokinesis (DOCK) nucleotide exchange factors. J Biol Chem. 2011;286(28):25341–51. https://doi.org/10.1074/jbc.M111.236455.
Jing Y, Kang D, Liu L, Huang H, Chen A, Yang L, et al. Dedicator of cytokinesis protein 2 couples with lymphoid enhancer-binding factor 1 to regulate expression of CD21 and B-cell differentiation. J Allergy Clin Immunol. 2019;144(5):1377–90 e4. https://doi.org/10.1016/j.jaci.2019.05.041
Kunisaki Y, Tanaka Y, Sanui T, et al. DOCK2 is required in T cell precursors for development of Valpha14 NK T cells. J Immunol. 2006;176(8):4640–5. https://doi.org/10.4049/jimmunol.176.8.4640.
Gotoh K, Tanaka Y, Nishikimi A, Inayoshi A, Enjoji M, Takayanagi R, et al. Differential requirement for DOCK2 in migration of plasmacytoid dendritic cells versus myeloid dendritic cells. Blood. 2008;111(6):2973–6. https://doi.org/10.1182/blood-2007-09-112169.
Nombela-Arrieta C, Lacalle RA, Montoya MC, et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity. 2004;21(3):429–41. https://doi.org/10.1016/j.immuni.2004.07.012.
Wang L, Nishihara H, Kimura T, et al. DOCK2 regulates cell proliferation through Rac and ERK activation in B cell lymphoma. Biochem Biophys Res Commun. 2010;395(1):111–5. https://doi.org/10.1016/j.bbrc.2010.03.148.
Liu Z, Man SM, Zhu Q, Vogel P, Frase S, Fukui Y, et al. DOCK2 confers immunity and intestinal colonization resistance to Citrobacter rodentium infection. Sci Rep. 2016;6:27814. https://doi.org/10.1038/srep27814.
Ji L, Chen Y, Xie L, Liu Z. The role of Dock2 on macrophage migration and functions during Citrobacter rodentium infection. Clin Exp Immunol. 2021;204(3):361–72. https://doi.org/10.1111/cei.13590.
Zeng RJ, Xie WJ, Zheng CW, Chen WX, Wang SM, Li Z, et al. Role of Rho guanine nucleotide exchange factors in non-small cell lung cancer. Bioengineered. 2021;12(2):11169–87. https://doi.org/10.1080/21655979.2021.2006519.
Hasan MK, Ghia EM, Rassenti LZ, Widhopf GF 2nd, Kipps TJ. Wnt5a enhances proliferation of chronic lymphocytic leukemia and ERK1/2 phosphorylation via a ROR1/DOCK2-dependent mechanism. Leukemia. 2021;35(6):1621–30. https://doi.org/10.1038/s41375-020-01055-7.
Lei Y, Liu C, Saito F, Fukui Y, Takahama Y. Role of DOCK2 and DOCK180 in fetal thymus colonization. Eur J Immunol. 2009;39(10):2695–702. https://doi.org/10.1002/eji.200939630.
Wen Y, Elliott MJ, Huang Y, et al. DOCK2 is critical for CD8(+) TCR(-) graft facilitating cells to enhance engraftment of hematopoietic stem and progenitor cells. Stem Cells. 2014;32(10):2732–43. https://doi.org/10.1002/stem.1780.
Sanui T, Inayoshi A, Noda M, Iwata E, Oike M, Sasazuki T, et al. DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-theta and LFA-1. T cells. 2003;19(1):119–29. https://doi.org/10.1016/s1074-7613(03)00169-9.
Tanaka Y, Hamano S, Gotoh K, Murata Y, Kunisaki Y, Nishikimi A, et al. T helper type 2 differentiation and intracellular trafficking of the interleukin 4 receptor-alpha subunit controlled by the Rac activator Dock2. Nat Immunol. 2007;8(10):1067–75. https://doi.org/10.1038/ni1506.
Cerboni S, Gehrmann U, Preite S, Mitra S. Cytokine-regulated Th17 plasticity in human health and diseases. Immunology. 2021;163(1):3–18. https://doi.org/10.1111/imm.13280.
Honda K, Yanai H, Negishi H, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. 2005;434(7034):772–7. https://doi.org/10.1038/nature03464.
Ramos BC, Aranda CS, Sobrinho AO, Sole D, Condino-Neto A. TRECs/KRECs: Beyond the Diagnosis of Severe Combined Immunodeficiency. J Clin Immunol. 2023;43(1):80–1. https://doi.org/10.1007/s10875-022-01363-w.
Henderson RB, Grys K, Vehlow A, et al. A novel Rac-dependent checkpoint in B cell development controls entry into the splenic white pulp and cell survival. J Exp Med. 2010;207(4):837–53. https://doi.org/10.1084/jem.20091489.
Ushijima M, Uruno T, Nishikimi A, Sanematsu F, Kamikaseda Y, Kunimura K, et al. The Rac Activator DOCK2 Mediates Plasma Cell Differentiation and IgG Antibody Production. Front Immunol. 2018;9:243. https://doi.org/10.3389/fimmu.2018.00243.
Kao YY, Gianni D, Bohl B, Taylor RM, Bokoch GM. Identification of a conserved Rac-binding site on NADPH oxidases supports a direct GTPase regulatory mechanism. J Biol Chem. 2008;283(19):12736–46. https://doi.org/10.1074/jbc.M801010200.
Watanabe M, Terasawa M, Miyano K, Yanagihara T, Uruno T, Sanematsu F, et al. DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation. J Immunol. 2014;193(11):5660–7. https://doi.org/10.4049/jimmunol.1400885.
Sprenkeler EGG, Tool ATJ, Henriet SSV, van Bruggen R, Kuijpers TW. Formation of neutrophil extracellular traps requires actin cytoskeleton rearrangements. Blood. 2022;139(21):3166–80. https://doi.org/10.1182/blood.2021013565.