Multiphasic Individual Growth Models in Random Environments
Tóm tắt
The evolution of the growth of an individual in a random environment can be described through stochastic differential equations of the form dY
t
= β(α − Y
t
)dt + σdW
t
, where Y
t
= h(X
t
), X
t
is the size of the individual at age t, h is a strictly increasing continuously differentiable function, α = h(A), where A is the average asymptotic size, and β represents the rate of approach to maturity. The parameter σ measures the intensity of the effect of random fluctuations on growth and W
t
is the standard Wiener process. We have previously applied this monophasic model, in which there is only one functional form describing the average dynamics of the complete growth curve, and studied the estimation issues. Here, we present the generalization of the above stochastic model to the multiphasic case, in which we consider that the growth coefficient β assumes different values for different phases of the animal’s life. For simplicity, we consider two phases with growth coefficients β
1 and β
2. Results and methods are illustrated using bovine growth data.
Tài liệu tham khảo
Braumann CA (2005) Introdução às Equações Diferenciais Estocásticas. Edições SPE, Lisboa
Filipe PA, Braumann CA (2007) Animal growth in random environments: estimation with several paths. Bulletin of the International Statistical Institute, vol LXII, pp 5806–5809
Filipe PA, Braumann CA (2008) Modelling individual animal growth in random environments. In: Eilers PHC (ed) Proceedings of the 23rd international workshop on statistical modelling, pp 232–237
Filipe PA, Braumann CA, Roquete CJ (2007) Modelos de crescimento de animais em ambiente aleatório. In: Ferrão ME, Nunes C, Braumann CA (eds) Estatística Ciência Interdisciplinar, Actas do XIV Congresso Anual da Sociedade Portuguesa de Estatística. Edições SPE, pp 401–410
Filipe PA, Braumann CA, Roquete CJ (2008) Crescimento individual em ambiente aleatório: várias trajectórias. In: Hill MM, Ferreira MA, Dias JG, Salgueiro MF, Carvalho H, Vicente P, Braumann CA (eds) Estatística—da Teoria à Prática, Actas do XV Congresso Anual da Sociedade Portuguesa de Estatística. Edições SPE, pp 259–268
Garcia O (1983) A stochastic differential equation model for the height of forest stands. Biometrics 39:1059–1072
Nesetrilová H (2005) Multiphasic growth models for cattle. Czech J Anim Sci 50(8):347–354
Qiming Lv, Pitchford J (2007) Stochastic Von Bertalanffy models, with applications to fish recruitment. J Theor Biol 244:640–655
Richards F (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300
Verhulst PF (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathématique et Physique 10:113–121
von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Q Rev Biol 34:786–795