Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá đa thông số MRI của các sarcoma xương ở trẻ em
Tóm tắt
Sarcoma xương (Osteosarcoma) và sarcoma Ewing (Ewing sarcoma) là hai loại sarcoma xương phổ biến nhất ở trẻ em. Biểu hiện lâm sàng của chúng rất đa dạng tùy thuộc vào độ tuổi của bệnh nhân và vị trí của khối u. MRI là phương pháp chẩn đoán lựa chọn để đánh giá các sarcoma xương này và đóng vai trò quan trọng trong chẩn đoán cũng như theo dõi tái phát hoặc phản ứng của khối u. Các chuỗi hình ảnh giải phẫu bao gồm hình ảnh T1 và T2 tăng cường, cung cấp đánh giá hình thái học cần thiết để định vị khối u và mô tả các ranh giới giải phẫu. MRI đa thông số cung cấp thông tin chức năng hỗ trợ trong đánh giá phản ứng của khối u với liệu pháp thông qua việc sử dụng các chuỗi hình ảnh khác nhau và các dấu ấn sinh học. Bài viết tổng quan này minh họa vai trò của MRI trong việc đánh giá sarcoma xương và sarcoma Ewing ở trẻ em, với nhấn mạnh vào quan điểm chức năng, nêu bật việc sử dụng hình ảnh khuếch tán và MRI tăng cường tương phản động trong chẩn đoán, trong và sau khi điều trị.
Từ khóa
#sarcoma xương #MRI #trẻ em #đánh giá đa thông số #khối uTài liệu tham khảo
WHO Classification of Tumours Editorial Board (2020) Soft tissue and bone tumours. International Agency for Research on Cancer Press, Lyon, France
Kaste SC (2011) Imaging pediatric bone sarcomas. Radiol Clin North Am 49:749–765
McCarville MB, Chen JY, Coleman JL et al (2015) Distinguishing osteomyelitis from Ewing sarcoma on radiography and MRI. AJR Am J Roentgenol 205:640–650
Wang CS, Yin QH, Liao JS et al (2012) Primary diaphyseal osteosarcoma in long bones: imaging features and tumor characteristics. Eur J Radiol 81:3397–3403
Alsharief AN, Martinez-Rios C, Hopyan S, Amirabadi A, Doria AS, Greer MLC (2019) Usefulness of diffusion-weighted MRI in the initial assessment of osseous sarcomas in children and adolescents. Pediatr Radiol 49:1201–1208
Thompson MJ, Shapton JC, Punt SE, Johnson CN, Conrad EU 3rd (2018) MRI identification of the osseous extent of pediatric bone sarcomas. Clin Orthop Relat Res 476:559–564
Casali PG, Bielack S, Abecassis N et al (2018) Bone sarcomas: ESMO-PaedCan-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 29:iv79–iv95
Guenther LM, Rowe RG, Acharya PT et al (2018) Response Evaluation Criteria in Solid Tumors (RECIST) following neoadjuvant chemotherapy in osteosarcoma. Pediatr Blood Cancer 65(4)
McCarville MB, Federico SM, Bishop MW et al (2016) Assessment of chemotherapy response in ewing sarcoma. Radiology 281(2):647–649
Saifuddin A, Sharif B, Gerrand C, Whelan J (2019) The current status of MRI in the pre-operative assessment of intramedullary conventional appendicular osteosarcoma. Skeletal Radiol 48(4):503–516
Masrouha KZ, Musallam KM, Samra AB et al (2012) Correlation of non-mass-like abnormal MR signal intensity with pathological findings surrounding pediatric osteosarcoma and Ewing’s sarcoma. Skeletal Radiol 41:1453–1461
Murphey MD, Senchak LT, Mambalam PK, Logie CI, Klassen-Fischer MK, Kransdorf MJ (2013) From the radiologic pathology archives: Ewing sarcoma family of tumors: radiologic-pathologic correlation. Radiographics 33:803–831
Neubauer H, Evangelista L, Hassold N et al (2012) Diffusion-weighted MRI for detection and differentiation of musculoskeletal tumorous and tumor-like lesions in pediatric patients. World J Pediatr 8:342–349
Subhawong TK, Wilky BA (2015) Value added: functional MR imaging in management of bone and soft tissue sarcomas. Curr Opin Oncol 27:323–331
Degnan AJ, Chung CY, Shah AJ et al (2018) Quantitative diffusion-weighted magnetic resonance imaging assessment of chemotherapy treatment response of pediatric osteosarcoma and Ewing sarcoma malignant bone tumors. Clin Imaging 47:9–13
Pullens P, Bladt P, Sijbers J et al (2017) Technical Note: A safe, cheap, and easy-to-use isotropic diffusion MRI phantom for clinical and multicenter studies. Med Phys 44(3):1063–1070
Hori M, Kamiya K, Murata K (2021) Technical basics of diffusion-weighted imaging. Magn Reson Imaging Clin N Am 29(2):129–136
Asmar K, Saade C, Salman R et al (2020) The value of diffusion weighted imaging and apparent diffusion coefficient in primary osteogenic and Ewing sarcomas for the monitoring of response to treatment: initial experience. Eur J Radiol 28(124):108855
Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34:1163–1177
Surov A, Nagata S, Razek AA, Tirumani SH, Wienke A, Kahn T (2015) Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skeletal Radiol 44:995–1000
Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16:2637–2643
Saleh MM, Abdelrahman TM, Madney Y, Mohamed G, Shokry AM, Moustafa AF (2020) Multiparametric MRI with diffusion-weighted imaging in predicting response to chemotherapy in cases of osteosarcoma and Ewing’s sarcoma. Br J Radiol 93(1115):20200257
Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H (2010) The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skeletal Radiol 39:141–146
Nakajo M, Fukukura Y, Hakamada H et al (2018) Whole-tumor apparent diffusion coefficient (ADC) histogram analysis to differentiate benign peripheral neurogenic tumors from soft tissue sarcomas. Magn Reson Imaging 48:680–686
Singer AD, Pattany PM, Fayad LM, Tresley J, Subhawong TK (2016) Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors. Clin Imaging 40:386–391
Kubo T, Furuta T, Johan MP, Ochi M, Adachi N (2017) Value of diffusion-weighted imaging for evaluating chemotherapy response in osteosarcoma: a meta-analysis. Mol Clin Oncol 7:88–92
Lee SK, Jee WH, Jung CK, Im SA, Chung NG, Chung YG (2020) Prediction of poor responders to neoadjuvant chemotherapy in patients with osteosarcoma: additive value of diffusion-weighted MRI including volumetric analysis to standard MRI at 3T. PLoS One 10;15(3):e0229983.
Baidya Kayal E, Kandasamy D, Khare K, Bakhshi S, Sharma R, Mehndiratta A (2019) Intravoxel incoherent motion (IVIM) for response assessment in patients with osteosarcoma undergoing neoadjuvant chemotherapy. Eur J Radiol 119:108635
Fayad LM, Mugera C, Soldatos T, Flammang A, del Grande F (2013) Technical innovation in dynamic contrast-enhanced magnetic resonance imaging of musculoskeletal tumors: an MR angiographic sequence using a sparse k-space sampling strategy. Skeletal Radiol 42:993–1000
Costa FM, Martins PH, Canella C, Lopes FPPL (2018) Multiparametric MR imaging of soft tissue tumors and pseudotumors. Magn Reson Imaging Clin N Am 26:543–558
Kubo T, Furuta T, Johan MP et al (2016) Percent slope analysis of dynamic magnetic resonance imaging for assessment of chemotherapy response of osteosarcoma or Ewing sarcoma: systematic review and meta-analysis. Skeletal Radiol 45(9):1235–1242
Dyke JP, Panicek DM, Healey JH et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 228(1):271–278
Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA (2012) Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 265:340–356
Guo J, Reddick WE, Glass JO et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 118:3776–3785
Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC (2004) Soft-tissue tumors: value of static and dynamic gadopentetatedimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233:493–502
Lavini C, de Jonge MC, van de Sande MGH et al (2007) Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging 25(5):604–612
Vilanova JC, Baleato-Gonzalez S, Romero M, Carrascoso-Arranz J, Luna A (2016) Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imaging Clin N Am 24:239–259
Choyke PL, Dwyer AJ, Knopp MV (2003) Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 17:509–520
Uhl M, Saueressig U, van Buiren M et al (2006) Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 41(8):618–623
Longhi A, Errani C, Paolis De, Mercuri M, Bacci G (2006) Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev 32:423–436
Lindsey BA, Markel JE, Kleinerman ES (2017) Osteosarcoma overview. Rheumatol Ther 4:25–43
Vijayakumar V, Lowery R, Zhang X et al (2014) Pediatric osteosarcoma: a single institution’s experience. South Med J 107:671–675
Wang CS, Du LJ, Si MJ et al (2013) Noninvasive assessment of response to neoadjuvant chemotherapy in osteosarcoma of long bones with diffusion-weighted i. PLoS One 8:e72679
Zeitoun R, Shokry AM, Ahmed Khaleel S, Mogahed SM (2018) Osteosarcoma subtypes: magnetic resonance and quantitative diffusion weighted imaging criteria. J Egypt Natl Canc Inst 30:39–44
Wang J, Sun M, Liu D et al (2017) Correlation between apparent diffusion coefficient and histopathology subtypes of osteosarcoma after neoadjuvant chemotherapy. Acta Radiol 58:971–976
Zishan US, Pressney I, Khoo M, Saifuddin A (2020) The differentiation between aneurysmal bone cyst and telangiectaticosteosarcoma: a clinical, radiographic and MRI study. Skeletal Radiol 49(9):1375–1386
Lahl M, Fisher VL, Laschinger K (2008) Ewing’s sarcoma family of tumors: an overview from diagnosis to survivorship. Clin J Oncol Nurs 12:89–97
Murphey MD, Kransdorf MJ (2021) Staging and classification of primary musculoskeletal bone and soft-tissue tumors according to the 2020 WHO update, from the AJR Special Series on Cancer Staging. AJR Am J Roentgenol 217(5):1038–1052
Parlak S, Ergen FB, Yüksel GY et al (2021) Diffusion-weighted imaging for the differentiation of Ewing sarcoma from osteosarcoma. Skeletal Radiol 50(10):2023–2030
Habre C, Dabadie A, Loundou AD et al (2021) Diffusion-weighted imaging in differentiating mid-course responders to chemotherapy for long-bone osteosarcoma compared to the histologic response: an update. Pediatr Radiol 51(9):1714–1723
Huang B, Wang J, Sun M et al (2020) Feasibility of multi-parametric magnetic resonance imaging combined with machine learning in the assessment of necrosis of osteosarcoma after neoadjuvant chemotherapy: a preliminary study. BMC Cancer 20(1):322