Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification
Tài liệu tham khảo
Liu, 2016, POL-SAR image classification based on Wishart DBN and local spatial information, IEEE Trans. Geosci. Remote Sens., 54, 3292, 10.1109/TGRS.2016.2514504
E. Attema et al., “ENVISAT: ASAR science and applications,” Eur. Space Agency, Noordwijk, The Netherlands, ESA-SP-1225; SP-1225, 1998, p. 53.
Ulaby, 1990, 1, 376
Zhang, 2015, Fully polarimetric SAR image classification via sparse representation and polarimetric features, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 8, 3923, 10.1109/JSTARS.2014.2359459
Pottier, 1993, Dr. J. R. Huynen's main contributions in the development of polarimetric radar techniques and how the ‘radar targets phenomenological concept’ becomes a theory, 72
Freeman, 1998, A three-component scattering model for polarimetric SAR data, IEEE Trans. Geosci. Remote Sens., 36, 963, 10.1109/36.673687
Krogager, 1990, New decomposition of the radar target scattering matrix, Electron. Lett., 26, 1525, 10.1049/el:19900979
Cloude, 1997, An entropy based classification scheme for land applications of polarimetric SAR, IEEE Trans. Geosci. Remote Sens., 35, 68, 10.1109/36.551935
Cameron, 1990, Feature motivated polarization scattering matrix decomposition, 1, 549
Pottier, 1991, On radar polarization target decomposition theorems with application to target classification, by using neural network method, 265
Lee, 1994, Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery, IEEE Trans. Geosci. Remote Sens., 32, 1017, 10.1109/36.312890
Fukuda, 2001, Support vector machine classification of land cover: Application to polarimetric SAR data, 1, 187
Lardeux, 2009, Support vector machine for multifrequency SAR polarimetric data classification, IEEE Trans. Geosci. Remote Sens., 47, 4143, 10.1109/TGRS.2009.2023908
Richardson, 2010, Unsupervised nonparametric classification of polarimetric SAR data using the K-nearest neighbor graph, 1867
Chen, 1996, Classification of multifrequency polarimetric SAR imagery using a dynamic learning neural network, IEEE Trans. Geosci. Remote Sens., 34, 814, 10.1109/36.499786
Hellmann, 1999, Classification of full polarimetric sar-data using artificial neural networks and fuzzy algorithms, 4, 1995
Chen, 2003, The use of fully polarimetric information for the fuzzy neural classification of SAR images, IEEE Trans. Geosci. Remote Sens., 41, 2089, 10.1109/TGRS.2003.813494
Zhang, 2016, Stacked sparse autoencoder in PolSAR data classification using local spatial information, IEEE Geosci. Remote Sens. Lett., 13, 1359, 10.1109/LGRS.2016.2586109
Hou, 2016, Classification of polarimetric SAR images using multilayer autoencoders and superpixels, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 9, 3072, 10.1109/JSTARS.2016.2553104
Xie, 2017, POLSAR Image Classification via Wishart-AE Model or Wishart-CAE Model, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 10, 3604, 10.1109/JSTARS.2017.2698076
Xie, 2018, POLSAR image classification via clustering-WAE classification model, IEEE Access, 16, 40041, 10.1109/ACCESS.2018.2852768
Zhou, 2016, Polarimetric SAR image classification using deep convolutional neural networks, IEEE Geosci. Remote Sens. Lett., 13, 1935, 10.1109/LGRS.2016.2618840
Zhang, 2017, Complex-valued convolutional neural network and its application in polarimetric SAR image classification, IEEE Trans. Geosci. Remote Sens., 55, 7177, 10.1109/TGRS.2017.2743222
Li, 2018, A novel deep fully convolutional network for PolSAR image classification, Remote Sens, 10, 1984, 10.3390/rs10121984
Cao, 2019, Pixel-Wise PolSAR image classification via a novel complex-valued deep fully convolutional network, Remote Sens, 11, 2653, 10.3390/rs11222653
Sun, 2019, Evolving unsupervised deep neural networks for learning meaningful representations, IEEE Trans. Evol. Comput., 23, 89, 10.1109/TEVC.2018.2808689
Sun, 2015, Explicit guiding auto-encoders for learning meaningful representation, Neural Comput. Appl., 1
Zhang, 2007, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11, 712, 10.1109/TEVC.2007.892759
Wang, 2016, Constrained subproblems in a decomposition-based multiobjective evolutionary algorithm, IEEE Trans. Evol. Comput., 20, 475, 10.1109/TEVC.2015.2457616
Hinton, 2006, Reducing the dimensionality of data with neural networks, Science, 313, 504, 10.1126/science.1127647
Li, 2014, An evolutionary multiobjective approach to sparse reconstruction, IEEE Trans. Evol. Comput., 18, 827, 10.1109/TEVC.2013.2287153
Rachmawati, 2009, Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front, IEEE Trans. Evol. Comput., 13, 810, 10.1109/TEVC.2009.2017515
Deb, 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 182, 10.1109/4235.996017
Zitzler, 2004, Indicator-based selection in multiobjective search, 832
Cai, 2018, A constrained decomposition approach with grids for evolutionary multiobjective optimization,, IEEE Trans. Evol. Comput., 22, 564, 10.1109/TEVC.2017.2744674
Qi, 2014, MOEA/D with adaptive weight adjustment, Evol. Comput., 22, 231, 10.1162/EVCO_a_00109
Gu, 2010, A novel weight design in multi-objective evolutionary algorithm, 137
Qi, 2019, User-preference based decomposition in MOEA/D without using an ideal point, Swarm Evol. Comput., 44, 597, 10.1016/j.swevo.2018.08.002
Fan, 2019, Push and pull search for solving constrained multi-objective optimization problems, Swarm and Evol. Comput., 44, 665, 10.1016/j.swevo.2018.08.017
Z. Fan, W. Li, X. Cai*, H. Huang, Y. Fang, Y. You, J. Mo, C Wei, and E. D. Goodman, “An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions,” Soft Comput., 10.1007/s00500-019-03794-x.
Bergstra, 2012, Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13, 281
Young, 2015, Optimizing deep learning hyper-parameters through an evolutionary algorithm
Mockus, 1994, Application of Bayesian approach to numerical methods of global and stochastic optimization, J. Glob. Optim., 4, 347, 10.1007/BF01099263
Jones, 1998, Efficient global optimization of expensive black-box functions, J. Glob. Optim., 13, 455, 10.1023/A:1008306431147
Streltsov, 1999, A non-myopic utility function for statistical global optimization algorithms, J. Glob. Optim., 14, 283, 10.1023/A:1008284229931
E. Brochu, V. Cora, and N. Freitas, “A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning,” Dept. of Comput. Sci., University of British Columbia, Vancouver, Canada, Tech. Rep. TR-2009-023, 2009.
Li, 2012, Cooperatively coevolving particle swarms for large scale optimization, IEEE Trans. Evol. Comput., 16, 210, 10.1109/TEVC.2011.2112662
Bengio, 2009, Learning deep architectures for AI, Found. Trends Mach. Learn., 2, 1, 10.1561/2200000006
Krishnapuram, 2005, Sparse multinomial logistic regression: Fast algorithms and generalization bounds, IEEE Trans. Pattern Anal. Mach. Intell., 27, 957, 10.1109/TPAMI.2005.127
Wu, 2008, Region-based classification of polarimetric SAR images using wishart MRF, IEEE Geosci. Remote Sens. Lett., 5, 668, 10.1109/LGRS.2008.2002263
Cohen, 1960, A coefficient of agreement for nominal scales, Edu. Psychol. Meas., 20, 37, 10.1177/001316446002000104
Pedregosa et al., Scikit-learn: machine learning in python, [Online]. Available: https://scikit-learn.org/stable/
J. Gonzalez and Z. Dai, “GPyOpt: a Bayesian optimization framework in python,” [Online]. Available: http://github.com/SheffieldML/GPyOpt.2106.
Paszke, 2019, PyTorch: an imperative style, high-performance deep learning library