Multimodel inference in ecology and evolution: challenges and solutions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Akaike, 1973, Second International Symposium on Information Theory, 267
Anderson, 2002, Avoiding pitfalls when using information-theoretic methods, J. Wildl. Manage., 66, 912, 10.2307/3803155
Anderson, 2000, Null hypothesis testing: problems, prevalence, and an alternative, J. Wildl. Manage., 64, 912, 10.2307/3803199
Bartoń , K. 2009 MuMIn: multi-model inference. R package, version 0.12.2 http://r-forge.r-project.org/projects/mumin/
Bates , D. Maechler , M. 2009 lme4: Linear mixed-effects models using S4 classes. R package, version 0.999375-31 http://CRAN.R-project.org/package=lme4
Bolker, 2009, Learning hierarchical models: advice for the rest of us, Ecol. Appl., 19, 588, 10.1890/08-0639.1
Bolker, 2009, Generalized linear mixed models: a practical guide for ecology and evolution, Trends Ecol. Evol., 24, 127, 10.1016/j.tree.2008.10.008
Browne, 2005, Variance partitioning in multilevel logistic models that exhibit overdispersion, J. R. Stat. Soc. Ser. A-Stat. Soc., 168, 599, 10.1111/j.1467-985X.2004.00365.x
Burnham, 2002, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
Carstens, 2009, An information-theoretical approach to phylogeography, Mol. Ecol., 18, 4270, 10.1111/j.1365-294X.2009.04327.x
Claeskens, 2003, The focused information criterion, J. Am. Stat. Assoc., 98, 900, 10.1198/016214503000000819
Claeskens, 2007, Prediction-focused model selection for autoregressive models, Aus. N. Z. J. Stat., 49, 359, 10.1111/j.1467-842X.2007.00487.x
Congdon, 2006a, Bayesian model choice based on Monte Carlo estimates of posterior model probabilities, Comput. Stat. Data Anal., 50, 346, 10.1016/j.csda.2004.08.001
Darwin, 1876, The Effects of Crossing and Self-fertilization in the Vegetable Kingdom, 10.5962/bhl.title.110800
Dochtermann, 2010, Developing and evaluating multiple hypotheses in behavioral ecology, Behav. Ecol. Sociobiol.
Faraway, 2005, Linear Models with R
Fisher, 1948, The Theory of Inbreeding
Forslund, 1995, Age and reproduction in birds - hypotheses and tests, Trends Ecol. Evol., 10, 374, 10.1016/S0169-5347(00)89141-7
Freckleton, 2010, Dealing with collinearity in behavioral and ecological data: model averaging and the problems of measurement error, Behav. Ecol. Sociobiol., 65, 91, 10.1007/s00265-010-1045-6
Gelman, 2008, Scaling regression inputs by dividing by two standard deviations, Stat. Med., 27, 2865, 10.1002/sim.3107
Gelman, 2007, Data Analysis Using Regression and Multileval/Hierarchical Models
Gelman, 2000, Type S error rates for classical and Bayesian single and multiple comparison procedures, Comput. Stat., 15, 373, 10.1007/s001800000040
Gelman , A. Su , Y.-S. Yajima , M. Hill , J. Pittau , M.G. Kerman , J. et al. 2009 arm: data analysis using regression and multilevel/hierarchical models. R package, version 9.01 http://CRAN.R-project.org/package=arm
Grueber, 2008, Quantifying and managing the loss of genetic variation through the use of pedigrees in a non-captive endangered species, Conserv. Genet., 9, 645, 10.1007/s10592-007-9390-3
Grueber, 2010, Inbreeding depression accumulates across life-history stages of the endangered takahe, Conserv. Biol., 24, 1617, 10.1111/j.1523-1739.2010.01549.x
Haldane, 1924, The mathematical theory of natural and artificial selection. Part II: the influence of partial self-fertilization, inbreeding, assortative mating, and selective fertilization on the composition of Mendelian populations, and on natural selection, Proceedings of the Cambridge Philosophical Society, 1
Harrell, 2001, Regression Modeling Strategies: With Applications to Linear Models, Logisitic Regression, and Survival Analysis, 10.1007/978-1-4757-3462-1
Hereford, 2004, Comparing strengths of directional selection: how strong is strong?, Evolution, 58, 2133, 10.1111/j.0014-3820.2004.tb01592.x
Hurvich, 1989, Regression and time series model selection in small samples, Biometrika, 76, 297, 10.1093/biomet/76.2.297
Jamieson, 2003, Sex specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand takahe, Conserv. Biol., 17, 708, 10.1046/j.1523-1739.2003.01400.x
Jefferys, 1961, Theory of Probability
Johnson, 2004, Model selection in ecology and evolution, Trends Ecol. Evol., 19, 101, 10.1016/j.tree.2003.10.013
Keller, 2002, Inbreeding effects in wild populations, Trends Ecol. Evol., 17, 230, 10.1016/S0169-5347(02)02489-8
Keller, 2008, Testing evolutionary models of senescence in a natural population: age and inbreeding effects on fitness components in song sparrows, Proc. R. Soc. B, 275, 597, 10.1098/rspb.2007.0961
King, 1986, How not to lie with statistics: avoiding common mistakes in quantitative political science, Am. J. Pol. Sci., 30, 666, 10.2307/2111095
Laws , R.J. Jamieson , I.G. 2010 Is lack of evidence of inbreeding depression in a threatened New Zealand robin indicative of reduced genetic load? 10.1111/j.1469-1795.2010.00388.x
Laws , R.J. Townsend , S.M. Nakagawa , S. Jamieson , I.G. 2010 Limited inbreeding depression in a bottlenecked population is age but not environment dependent 10.1111/j.1600-048X.2010.05164.x
Lebreton, 1992, Modeling survival and testing biological hypotheses using marked animals - a unified approach with case studies, Ecol. Monogr., 62, 67, 10.2307/2937171
Liang, 2008, A note on conditional AIC for linear mixed-effects models, Biometrika, 95, 773, 10.1093/biomet/asn023
Link, 2006, Model weights and the foundations of multimodel inference, Ecology, 87, 2626, 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2
Lukacs, 2007, Concerns regarding a call for pluralism of information theory and hypothesis testing, J. Appl. Ecol., 44, 456, 10.1111/j.1365-2664.2006.01267.x
Lukacs, 2010, Model selection bias and Freedman’s paradox, Ann. Inst. Stat. Math., 62, 117, 10.1007/s10463-009-0234-4
Morton, 1956, An estimate of the mutational damage in man from data on consanguineous marriages, Proc. Natl. Acad. Sci. USA, 42, 855, 10.1073/pnas.42.11.855
Murtaugh, 2009, Performance of several variable-selection methods applied to real ecological data, Ecol. Lett., 12, 1061, 10.1111/j.1461-0248.2009.01361.x
Nakagawa, 2010, Model averaging, missing data and multiple imputation: a case study for behavioural ecology, Behav. Ecol. Sociobiol., 65, 103, 10.1007/s00265-010-1044-7
Nakagawa, 2010, Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists, Biol. Rev., 85, 935, 10.1111/j.1469-185X.2010.00141.x
Paterson, 2003, Mixed models: getting the best use of parasitological data, Trends. Parasitol., 19, 370, 10.1016/S1471-4922(03)00149-1
van de Pol, 2009, A simple method for distinguishing within- versus between-subject effects using mixed models, Anim. Behav., 77, 753, 10.1016/j.anbehav.2008.11.006
R Core Development Team 2009 R: a language and environment for statistical computing. version 2.9.0 http://www.r-project.org
Richards, 2005, Testing ecological theory using the information-theoretic approach: examples and cautionary results, Ecology, 86, 2805, 10.1890/05-0074
Richards, 2008, Dealing with overdispersed count data in applied ecology, J. Appl. Ecol., 45, 218, 10.1111/j.1365-2664.2007.01377.x
Richards, 2010, Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework, Behav. Ecol. Sociobiol., 65, 77, 10.1007/s00265-010-1035-8
Schielzeth, 2010, Simple means to improve the interpretability of regression coefficients, Meth. Ecol. Evol., 1, 103, 10.1111/j.2041-210X.2010.00012.x
Schielzeth, 2009, Conclusions beyond support: overconfident estimates in mixed models, Behav. Ecol., 20, 416, 10.1093/beheco/arn145
Spiegelhalter, 2002, Bayesian measures of model complexity and fit, J. R. Stat. Soc. B, 64, 583, 10.1111/1467-9868.00353
Stephens, 2005, Information theory and hypothesis testing: a call for pluralism, J. Appl. Ecol., 42, 4, 10.1111/j.1365-2664.2005.01002.x
Stephens, 2007, A call for statistical pluralism answered, J. Appl. Ecol., 44, 461, 10.1111/j.1365-2664.2007.01302.x
Symonds, 2008, Species richness and evenness in Australian birds, Am. Nat., 171, 480, 10.1086/528960
Symonds, 2010, A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion, Behav. Ecol. Sociobiol., 65, 13, 10.1007/s00265-010-1037-6
Tukey, 1977, Exploratory Data Analysis
Vaida, 2005, Conditional Akaike information for mixed-effects models, Biometrika, 92, 351, 10.1093/biomet/92.2.351
Whittingham, 2006, Why do we still use stepwise modelling in ecology and behaviour?, J. Anim. Ecol., 75, 1182, 10.1111/j.1365-2656.2006.01141.x
Wright, 1922, The effects of inbreeding and crossbreeding on guinea pigs III: crosses between highly inbred families, US Dept. Agric. Bull., 1121, 1
Yang, 2005, Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation, Biometrika, 92, 937, 10.1093/biomet/92.4.937