Multimodel inference in ecology and evolution: challenges and solutions

Journal of Evolutionary Biology - Tập 24 Số 4 - Trang 699-711 - 2011
Catherine E. Grueber1, Shinichi Nakagawa1, Rebecca Laws1, Ian G. Jamieson1
1Department of Zoology, University of Otago, Dunedin, New Zealand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akaike, 1973, Second International Symposium on Information Theory, 267

Anderson, 2002, Avoiding pitfalls when using information-theoretic methods, J. Wildl. Manage., 66, 912, 10.2307/3803155

Anderson, 2000, Null hypothesis testing: problems, prevalence, and an alternative, J. Wildl. Manage., 64, 912, 10.2307/3803199

Bartoń , K. 2009 MuMIn: multi-model inference. R package, version 0.12.2 http://r-forge.r-project.org/projects/mumin/

Bates , D. Maechler , M. 2009 lme4: Linear mixed-effects models using S4 classes. R package, version 0.999375-31 http://CRAN.R-project.org/package=lme4

Bolker, 2009, Learning hierarchical models: advice for the rest of us, Ecol. Appl., 19, 588, 10.1890/08-0639.1

Bolker, 2009, Generalized linear mixed models: a practical guide for ecology and evolution, Trends Ecol. Evol., 24, 127, 10.1016/j.tree.2008.10.008

Bring, 1994, How to standardize regression coefficients, Am. Stat., 48, 209, 10.2307/2684719

Browne, 2005, Variance partitioning in multilevel logistic models that exhibit overdispersion, J. R. Stat. Soc. Ser. A-Stat. Soc., 168, 599, 10.1111/j.1467-985X.2004.00365.x

Burnham, 1998, Model Selection and Multimodel Inference, 10.1007/978-1-4757-2917-7

Burnham, 2002, Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach

Carstens, 2009, An information-theoretical approach to phylogeography, Mol. Ecol., 18, 4270, 10.1111/j.1365-294X.2009.04327.x

Claeskens, 2003, The focused information criterion, J. Am. Stat. Assoc., 98, 900, 10.1198/016214503000000819

Claeskens, 2007, Prediction-focused model selection for autoregressive models, Aus. N. Z. J. Stat., 49, 359, 10.1111/j.1467-842X.2007.00487.x

Congdon, 2006a, Bayesian model choice based on Monte Carlo estimates of posterior model probabilities, Comput. Stat. Data Anal., 50, 346, 10.1016/j.csda.2004.08.001

Congdon, 2006b, Bayesian Statistical Modelling, 10.1002/9780470035948

Darwin, 1876, The Effects of Crossing and Self-fertilization in the Vegetable Kingdom, 10.5962/bhl.title.110800

Dochtermann, 2010, Developing and evaluating multiple hypotheses in behavioral ecology, Behav. Ecol. Sociobiol.

Faraway, 2005, Linear Models with R

Fisher, 1948, The Theory of Inbreeding

Forslund, 1995, Age and reproduction in birds - hypotheses and tests, Trends Ecol. Evol., 10, 374, 10.1016/S0169-5347(00)89141-7

Freckleton, 2010, Dealing with collinearity in behavioral and ecological data: model averaging and the problems of measurement error, Behav. Ecol. Sociobiol., 65, 91, 10.1007/s00265-010-1045-6

Gelman, 2008, Scaling regression inputs by dividing by two standard deviations, Stat. Med., 27, 2865, 10.1002/sim.3107

Gelman, 2007, Data Analysis Using Regression and Multileval/Hierarchical Models

Gelman, 2000, Type S error rates for classical and Bayesian single and multiple comparison procedures, Comput. Stat., 15, 373, 10.1007/s001800000040

Gelman , A. Su , Y.-S. Yajima , M. Hill , J. Pittau , M.G. Kerman , J. et al. 2009 arm: data analysis using regression and multilevel/hierarchical models. R package, version 9.01 http://CRAN.R-project.org/package=arm

Grueber, 2008, Quantifying and managing the loss of genetic variation through the use of pedigrees in a non-captive endangered species, Conserv. Genet., 9, 645, 10.1007/s10592-007-9390-3

Grueber, 2010, Inbreeding depression accumulates across life-history stages of the endangered takahe, Conserv. Biol., 24, 1617, 10.1111/j.1523-1739.2010.01549.x

Haldane, 1924, The mathematical theory of natural and artificial selection. Part II: the influence of partial self-fertilization, inbreeding, assortative mating, and selective fertilization on the composition of Mendelian populations, and on natural selection, Proceedings of the Cambridge Philosophical Society, 1

Harrell, 2001, Regression Modeling Strategies: With Applications to Linear Models, Logisitic Regression, and Survival Analysis, 10.1007/978-1-4757-3462-1

Hereford, 2004, Comparing strengths of directional selection: how strong is strong?, Evolution, 58, 2133, 10.1111/j.0014-3820.2004.tb01592.x

Hurvich, 1989, Regression and time series model selection in small samples, Biometrika, 76, 297, 10.1093/biomet/76.2.297

Jamieson, 2003, Sex specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand takahe, Conserv. Biol., 17, 708, 10.1046/j.1523-1739.2003.01400.x

Jefferys, 1961, Theory of Probability

Johnson, 2004, Model selection in ecology and evolution, Trends Ecol. Evol., 19, 101, 10.1016/j.tree.2003.10.013

Keller, 2002, Inbreeding effects in wild populations, Trends Ecol. Evol., 17, 230, 10.1016/S0169-5347(02)02489-8

Keller, 2008, Testing evolutionary models of senescence in a natural population: age and inbreeding effects on fitness components in song sparrows, Proc. R. Soc. B, 275, 597, 10.1098/rspb.2007.0961

King, 1986, How not to lie with statistics: avoiding common mistakes in quantitative political science, Am. J. Pol. Sci., 30, 666, 10.2307/2111095

Konishi, 2008, Information Criteria and Statistical Modeling, 10.1007/978-0-387-71887-3

Laws , R.J. Jamieson , I.G. 2010 Is lack of evidence of inbreeding depression in a threatened New Zealand robin indicative of reduced genetic load? 10.1111/j.1469-1795.2010.00388.x

Laws , R.J. Townsend , S.M. Nakagawa , S. Jamieson , I.G. 2010 Limited inbreeding depression in a bottlenecked population is age but not environment dependent 10.1111/j.1600-048X.2010.05164.x

Lebreton, 1992, Modeling survival and testing biological hypotheses using marked animals - a unified approach with case studies, Ecol. Monogr., 62, 67, 10.2307/2937171

Liang, 2008, A note on conditional AIC for linear mixed-effects models, Biometrika, 95, 773, 10.1093/biomet/asn023

Link, 2006, Model weights and the foundations of multimodel inference, Ecology, 87, 2626, 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2

Lukacs, 2007, Concerns regarding a call for pluralism of information theory and hypothesis testing, J. Appl. Ecol., 44, 456, 10.1111/j.1365-2664.2006.01267.x

Lukacs, 2010, Model selection bias and Freedman’s paradox, Ann. Inst. Stat. Math., 62, 117, 10.1007/s10463-009-0234-4

McCarthy, 2007, Bayesian Methods for Ecology, 10.1017/CBO9780511802454

Morton, 1956, An estimate of the mutational damage in man from data on consanguineous marriages, Proc. Natl. Acad. Sci. USA, 42, 855, 10.1073/pnas.42.11.855

Murtaugh, 2009, Performance of several variable-selection methods applied to real ecological data, Ecol. Lett., 12, 1061, 10.1111/j.1461-0248.2009.01361.x

Nakagawa, 2010, Model averaging, missing data and multiple imputation: a case study for behavioural ecology, Behav. Ecol. Sociobiol., 65, 103, 10.1007/s00265-010-1044-7

Nakagawa, 2010, Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists, Biol. Rev., 85, 935, 10.1111/j.1469-185X.2010.00141.x

Paterson, 2003, Mixed models: getting the best use of parasitological data, Trends. Parasitol., 19, 370, 10.1016/S1471-4922(03)00149-1

van de Pol, 2009, A simple method for distinguishing within- versus between-subject effects using mixed models, Anim. Behav., 77, 753, 10.1016/j.anbehav.2008.11.006

R Core Development Team 2009 R: a language and environment for statistical computing. version 2.9.0 http://www.r-project.org

Richards, 2005, Testing ecological theory using the information-theoretic approach: examples and cautionary results, Ecology, 86, 2805, 10.1890/05-0074

Richards, 2008, Dealing with overdispersed count data in applied ecology, J. Appl. Ecol., 45, 218, 10.1111/j.1365-2664.2007.01377.x

Richards, 2010, Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework, Behav. Ecol. Sociobiol., 65, 77, 10.1007/s00265-010-1035-8

Schielzeth, 2010, Simple means to improve the interpretability of regression coefficients, Meth. Ecol. Evol., 1, 103, 10.1111/j.2041-210X.2010.00012.x

Schielzeth, 2009, Conclusions beyond support: overconfident estimates in mixed models, Behav. Ecol., 20, 416, 10.1093/beheco/arn145

Schwarz, 1978, Estimating the dimension of a model, Ann. Stat., 6, 461, 10.1214/aos/1176344136

Schwarz, 1999, Estimating animal abundance: review III, Stat. Sci., 14, 427, 10.1214/ss/1009212521

Spiegelhalter, 2002, Bayesian measures of model complexity and fit, J. R. Stat. Soc. B, 64, 583, 10.1111/1467-9868.00353

Stephens, 2005, Information theory and hypothesis testing: a call for pluralism, J. Appl. Ecol., 42, 4, 10.1111/j.1365-2664.2005.01002.x

Stephens, 2007, A call for statistical pluralism answered, J. Appl. Ecol., 44, 461, 10.1111/j.1365-2664.2007.01302.x

Symonds, 2008, Species richness and evenness in Australian birds, Am. Nat., 171, 480, 10.1086/528960

Symonds, 2010, A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion, Behav. Ecol. Sociobiol., 65, 13, 10.1007/s00265-010-1037-6

Tukey, 1977, Exploratory Data Analysis

Vaida, 2005, Conditional Akaike information for mixed-effects models, Biometrika, 92, 351, 10.1093/biomet/92.2.351

Whittingham, 2006, Why do we still use stepwise modelling in ecology and behaviour?, J. Anim. Ecol., 75, 1182, 10.1111/j.1365-2656.2006.01141.x

Wright, 1922, The effects of inbreeding and crossbreeding on guinea pigs III: crosses between highly inbred families, US Dept. Agric. Bull., 1121, 1

Yang, 2005, Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation, Biometrika, 92, 937, 10.1093/biomet/92.4.937

Zuur, 2010, A protocol for data exploration to avoid common statistical problems, Meth. Ecol. Evol., 1, 3, 10.1111/j.2041-210X.2009.00001.x