Phương pháp hình ảnh đa phương thức đối với bệnh amyloidosis tim: phần 2

Heart Failure Reviews - Tập 27 - Trang 1515-1530 - 2021
Jacqueline Sennott1, Karthikeyan Ananthasubramaniam1
1Heart and Vascular Institute, West Bloomfield, USA

Tóm tắt

Với những tiến bộ gần đây trong hình ảnh học tim, di truyền học và các phương pháp điều trị, bệnh amyloidosis tim (CA) hiện được công nhận là một tình trạng quan trọng và thường bị chẩn đoán thiếu, góp phần vào những vấn đề về tim mạch. Mặc dù vẫn được coi là một bệnh hiếm gặp, CA giờ đây được công nhận là một yếu tố quan trọng góp phần vào suy tim với phân suất tống máu bảo tồn (HFPEF) và hẹp động mạch chủ gradient thấp, hai tình trạng quan trọng thường gặp trong thực hành lâm sàng. Bài đánh giá này sử dụng các tình huống lâm sàng để làm nổi bật vai trò bổ sung của các công cụ hình ảnh truyền thống như điện tâm đồ (ECG) và siêu âm tim (echo) kết hợp với hình ảnh học tim tiên tiến sử dụng cộng hưởng từ tim (CMR) và xạ hình tim hạt nhân sử dụng các chất đánh dấu ưa xương trong quy trình làm việc toàn diện của CA. Chúng tôi cũng nhấn mạnh tầm quan trọng của việc làm việc chẩn đoán bệnh chuỗi nhẹ như một phần tích hợp các phát hiện hình ảnh và thảo luận về các khía cạnh chính của các phương thức hình ảnh khác nhau. Cuối cùng, một thuật toán tích hợp nghi ngờ lâm sàng, xét nghiệm trong phòng lab, và hình ảnh trong quá trình làm việc của CA được trình bày.

Từ khóa

#bệnh amyloidosis tim #hình ảnh học tim #suy tim #phân suất tống máu bảo tồn #điện tâm đồ #siêu âm tim #cộng hưởng từ tim #xạ hình tim hạt nhân

Tài liệu tham khảo

Kyle RA, Linos A, Beard CM, Linke RP, Gertz MA, O’Fallon WM, Kurland LT (1992) Incidence and natural history of primary systemic amyloidosis in Olmsted County, Minnesota, 1950 through 1989. Blood 79(7):1817–1822 (PMID: 1558973) Muchtar E, Gertz MA, Kumar SK, Lacy MQ, Dingli D, Buadi FK et al (2017) Improved outcomes for newly diagnosed AL amyloidosis over the years 2000–2014: cracking the glass ceiling of early death. Blood 129:2111–2119 Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS (2019) Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 73(22):2872–2891. https://doi.org/10.1016/j.jacc.2019.04.003.PMID:31171094;PMCID:PMC6724183 Gillmore JD, Damy T, Fontana M et al (2018) A new staging system for cardiac transthyretin amyloidosis. Eur Heart J 39:2799–2806 Dubrey SW, Cha K, Skinner M et al (1997) Familial and primary (AL) cardiac amyloidosis: echocardiographically similar diseases with distinctly different clinical outcomes. Heart 78:74–82 Siddiqi OK, Ruberg FL (2018) Cardiac amyloidosis: an update on pathophysiology, diagnosis, and treatment. Trends Cardiovasc Med 28:10–21 From AM, Maleszewski JJ, Rihal CS (2011) Current status of endomyocardial biopsy. Mayo Clin Proc 86(11):1095–1102. https://doi.org/10.4065/mcp.2011.0296 Fine NM, Arruda-Olson AM, Dispenzieri A, Zeldenrust SR, Gertz MA, Kyle RA, Swiecicki PL, Scott CG, Grogan M (2014) Yield of noncardiac biopsy for the diagnosis of transthyretin cardiac amyloidosis. Am J Cardiol 113(10):1723–1727. https://doi.org/10.1016/j.amjcard.2014.02.030 (Epub 2014 Mar 2 PMID: 24698461) Palladini G, Russo P, Bosoni T, Verga L, Sarais G, Lavatelli F, Nuvolone M, Obici L, Casarini S, Donadei S et al (2009) Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem 55:499–504. https://doi.org/10.1373/clinchem.2008.117143 Katzmann JA, Abraham RS, Dispenzieri A, Lust JA, Kyle RA (2005) Diagnostic performance of quantitative kappa and lambda free light chain assays in clinical practice. Clin Chem 51:878–881. https://doi.org/10.1373/clinchem.2004.046870 Muchtar E, Gertz MA, Kyle RA, Lacy MQ, Dingli D, Leung N, Buadi FK, Hayman SR, Kapoor P, Hwa YL et al (2019) A modern primer on light chain amyloidosis in 592 patients with mass spectrometry-verified typing. Mayo Clin Proc 94:472–483. https://doi.org/10.1016/j.mayocp.2018.08.006 Rapezzi C, Merlini G, Quarta CC, Riva L, Longhi S, Leone O, Salvi F, Ciliberti P, Pastorelli F, Biagini E, Coccolo F, Cooke RM, Bacchi-Reggiani L, Sangiorgi D, Ferlini A, Cavo M, Zamagni E, Fonte ML, Palladini G, Salinaro F, Musca F, Obici L, Branzi A, Perlini S (2009) Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation 120(13):1203–1212. https://doi.org/10.1161/CIRCULATIONAHA.108.843334 (Epub 2009 Sep 14 PMID: 19752327) Rahman JE, Helou EF, Gelzer-Bell R, Thompson RE, Kuo C, Rodriguez ER, Hare JM, Baughman KL, Kasper EK (2004) Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol 43(3):410–415. https://doi.org/10.1016/j.jacc.2003.08.043 (PMID: 15013123) Gertz MA, Comenzo R, Falk RH, Fermand JP, Hazenberg BP, Hawkins PN et al (2005) Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): a consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am J Hematol 79:319–328 Carroll JD, Gaasch WH, McAdam KP (1982) Amyloid cardiomyopathy: characterization by a distinctive voltage/mass relation. Am J Cardiol 49(1):9–13. https://doi.org/10.1016/0002-9149(82)90270-3 (PMID: 6459025) Martinez-Naharro A, Treibel TA, Abdel-Gadir A, Bulluck H, Zumbo G, Knight DS, Kotecha T, Francis R, Hutt DF, Rezk T, Rosmini S, Quarta CC, Whelan CJ, Kellman P, Gillmore JD, Moon JC, Hawkins PN, Fontana M (2017) Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol 70(4):466–477. https://doi.org/10.1016/j.jacc.2017.05.053 (PMID: 28728692) Mörner S, Hellman U, Suhr OB, Kazzam E, Waldenström A (2005) Amyloid heart disease mimicking hypertrophic cardiomyopathy. J Intern Med 258(3):225–230. https://doi.org/10.1111/j.1365-2796.2005.01522.x (PMID: 16115295) Dorbala S, Bokhari S, Miller E, Bullock-Palmer R, Soman P, Thompson R (2019) ASNC practice points: 99mTechnetium-pyrophosphate imaging for transthyretin cardiac amyloidosis (American Society of Nuclear Cardiology website). Available at https://www.asnc.org/Files/Amyloid/ASNC%20Practice%20Point-99mTechnetium-Pyrophosphate.2019.pdf. Accessed February 2019 Habib G, Bucciarelli-Ducci C, Caforio ALP, Cardim N, Charron P, Cosyns B et al (2017) EACVI Scientific Documents Committee. Multimodality imaging in restrictive cardiomyopathies: an EACVI expert consensus document in collaboration with the “Working Group on myocardial and pericardial diseases” of the European Society of Cardiology endorsed by the Indian Academy of Echocardiography. Eur Heart J Cardiovasc Imaging 18:1090–121 Quarta CC, Solomon SD, Uraizee I, Kruger J, Longhi S, Ferlito M et al (2014) Left ventricular structure and function in transthyretin-related vs light-chain cardiac amyloidosis. Circulation 129:1840–1849 Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98:1442–1448 Singh V, Soman P, Malhotra S (2020) Reduced diagnostic accuracy of apical-sparing strain abnormality for cardiac amyloidosis in patients with chronic kidney disease. J Am Soc Echocardiogr 33(7):913–916. https://doi.org/10.1016/j.echo.2020.03.012 (Epub 2020 May 27 PMID: 32473842) Pagourelias ED, Mirea O, Duchenne J, Van Cleemput J, Delforge M, Bogaert J et al (2017) Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and non-deformation parameters. Circ Cardiovasc Imaging 10:e005588 Cueto-Garcia L, Reeder GS, Kyle RA, Wood DL, Seward JB, Naessens J et al (1985) Echocardiographic findings in systemic amyloidosis: spectrum of cardiac involvement and relation to survival. J Am Coll Cardiol 6:737–743 Siqueira-Filho AG, Cunha CL, Tajik AJ, Seward JB, Schattenberg TT, Giuliani ER (1981) M-mode and two-dimensional echocardiographic features in cardiac amyloidosis. Circulation 63:188–196 Gonzalez-Lopez E, Gagliardi C, Dominguez F, Quarta CC, de Haro-Del Moral FJ, Milandri A et al (2017) Clinical characteristics of wild-type transthyretin cardiac amyloidosis: disproving myths. Eur Heart J 38:1895–1904 Jurcuţ R, Onciul S, Adam R, Stan C, Coriu D, Rapezzi C, Popescu BA (2020) Multimodality imaging in cardiac amyloidosis: a primer for cardiologists. Eur Heart J Cardiovasc Imaging 21(8):833–844. https://doi.org/10.1093/ehjci/jeaa063 (PMID: 32393965) Maceira AM, Joshi J, Prasad SK, Moon JC, Perugini E, Harding I, Sheppard MN, Poole-Wilson PA, Hawkins PN, Pennell DJ (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–193. https://doi.org/10.1161/01.CIR.0000152819.97857.9D (Epub 2005 Jan 3 PMID: 15630027) Fontana M, Pica S, Reant P, Abdel-Gadir A, Treibel TA, Banypresad SM, Maestrini V, Barcella W, Rosmini S, Bulluck H, Sayed RH et al (2015) Prognostic value of late gadolinium enhancement cardiac magnetic resonance in cardiac amyloidosis. Circulation 132:1570–1579 Uretsky S (2012) Cardiovascular magnetic resonance imaging in hypertrophic cardiomyopathy. Prog Cardiovasc Dis 54(6):512–516 Zhu Y, Park EA, Lee W, Kim HK, Chu A, Chung JW, Park JH (2015) Extent of late gadolinium enhancement at right ventricular insertion points in patients with hypertrophic cardiomyopathy: relation with diastolic dysfunction. Eur Radiol 25(4):1190–1200. https://doi.org/10.1007/s00330-014-3390-8 (Epub 2015 Jan 18 PMID: 25597022) Kwong RY, Heydari B, Abbasi S, Steel K, Al-Mallah M, Wu H, Falk RH (2015) Characterization of cardiac amyloidosis by atrial late gadolinium enhancement using contrast-enhanced cardiac magnetic resonance imaging and correlation with left atrial conduit and contractile function. Am J Cardiol 116(4):622–9. https://doi.org/10.1016/j.amjcard.2015.05.021. Epub 2015 May 22. PMID: 26076990; PMCID: PMC4769620 Shintani Y, Okada A, Morita Y, Hamatani Y, Amano M, Takahama H, Amaki M, Hasegawa T, Ohta-Ogo K, Kanzaki H, Ishibashi-Ueda H, Yasuda S, Shimazaki C, Yoshinaga T, Yazaki M, Sekijima Y, Izumi C (2019) Monitoring treatment response to tafamidis by serial native T1 and extracellular volume in transthyretin amyloid cardiomyopathy. ESC Heart Fail 6(1):232–236. https://doi.org/10.1002/ehf2.12382. Epub 2018 Nov 27. PMID: 30478886; PMCID: PMC6352892 Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, Treibel TA, Whelan CJ, Knight DS, Kellman P, Ruberg FL, Gillmore JD, Moon JC, Hawkins PN, Fontana M (2019) Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 12(5):810–819. https://doi.org/10.1016/j.jcmg.2018.02.006 (Epub 2018 Mar 14 PMID: 29550324) Baggiano A, Boldrini M, Martinez-Naharro A, Kotecha T, Petrie A, Rezk T et al (2020) Noncontrast magnetic resonance for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 13:69–80 Fontana M, Banypersad SM, Treibel TA, et al (2014) Native T1 mapping in transthyretin amyloidosis. J Am Coll Cardiol Img 7:157–165 Stats MA, Stone JR (2016) Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol 25:413–417 Gillmore JD, Maurer MS, Falk RH et al (2016) Non-biopsy diagnosis of cardiac transthyretin amyloidosis. Circulation 133:2404–2412 Castano A, Haq M, Narotsky DL, Goldsmith J, Weinberg RL, Morgenstern R, Pozniakoff T, Ruberg FL, Miller EJ, Berk JL et al (2016) Multicenter study of planar technetium 99m pyrophosphate cardiac imaging: predicting survival for patients with ATTR cardiac amyloidosis. JAMA Cardiol 1:880–889. https://doi.org/10.1001/jamacardio.2016.2839