Multimodal particle swarm optimization for feature selection
Tài liệu tham khảo
Gheyas, 2010, Feature subset selection in large dimensionality domains, Pattern Recognit., 43, 5, 10.1016/j.patcog.2009.06.009
Roberto, 2012, A global-ranking local feature selection method for text categorization, Expert Syst. Appl., 39, 12851, 10.1016/j.eswa.2012.05.008
Sadri, 2017, WN-Based approach to melanoma diagnosis from dermoscopy images, IET Image Process, 11, 475, 10.1049/iet-ipr.2016.0681
Pudil, 1994, Floating search methods in feature selection, Pattern Recognit. Lett., 15, 1119, 10.1016/0167-8655(94)90127-9
Calvet, 2017, Learnheuristics: hybridizing metaheuristics with machine learning for optimization with dynamic inputs, Open Math., 15, 261, 10.1515/math-2017-0029
Choi, 2018, Efficient ranking and selection for stochastic simulation model based on hypothesis test, IEEE Trans. Syst. Man Cybern. Syst., 48, 1555, 10.1109/TSMC.2017.2679192
Kanan, 2008, GA-Based optimal selection of PZMI features for face recognition, Appl. Math. Comput., 205, 706, 10.1016/j.amc.2008.05.114
Hamdani, 2007, Multi-objective feature selection with NSGA II, vol. 4431, 240
Khushaba, 2011, Feature subset selection using differential evolution and a statistical repair mechanism, Expert Syst. Appl., 38, 11515, 10.1016/j.eswa.2011.03.028
Sameen, 2017, Integration of ant colony optimization and object-based analysis for LiDAR data classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 10, 2055, 10.1109/JSTARS.2017.2650956
Fernandes, 2017, KANTS: a stigmergic ant algorithm for cluster analysis and swarm art, IEEE Trans. Cybern., 44, 843, 10.1109/TCYB.2013.2273495
Xue, 2013, Particle swarm optimization for feature selection in classification: A multi-objective approach, IEEE Trans. Cybern., 43, 1656, 10.1109/TSMCB.2012.2227469
Hu, 2020, Multiobjective particle swarm optimization for feature selection with fuzzy cost, IEEE Trans. Cybern., 50, 874
Abdollahzadeh, 2021, A multi-objective optimization algorithm for feature selection problems, Eng. Comput., 1
A.A. Bidgoli, H. Ebrahimpour-Komleh, S. Rahnamayan, A novel multi-objective binary differential evolution algorithm for multi-label feature selection, in: Proc. 2019 IEEE Congress on Evolutionary Computation (CEC), 2019, pp. 1588-1595.
Y. Zhang, M. Rong, D. Gong, A multi-objective feature selection based on differential evolution, in: 2015 International Conference on Control, Automation and Information Sciences (ICCAIS), 2015, pp. 302-306.
Zhang, 2017, Multi-objective particle swarm optimization approach for cost-based feature selection in classification, IEEE/ACM Trans. Comput. Biol. Bioinform., 14, 64, 10.1109/TCBB.2015.2476796
J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Vol. 5, 1997, pp. 4104-4108.
Chuang, 2011, Chaotic maps based on binary particle swarm optimization for feature selection, Appl. Soft Comput., 11, 239, 10.1016/j.asoc.2009.11.014
Blackwell, 2012, A study of collapse in bare bones particle swarm optimization, IEEE Trans. Evol. Comput., 16, 354, 10.1109/TEVC.2011.2136347
Zhang, 2014, Adaptive bare-bones particle swarm optimization algorithm and its convergence analysis, Soft Comput., 18, 1337, 10.1007/s00500-013-1147-y
C. Li, H. Hu, H. Gao, et al. Adaptive bare bones particle swarm optimization for feature selection, in: 2016 Chinese Control and Decision Conference (CCDC), 2016, pp. 1615-1620.
Sakri, 2018, Particle swarm optimization feature selection for breast cancer recurrence prediction, IEEE Access, 6, 29637, 10.1109/ACCESS.2018.2843443
Nurhayati, F. Agustian, M.D.I. Lubis, Particle swarm optimization feature selection for breast cancer prediction, in: Proc. of 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal, Indonesia, 2020, pp. 1-6.
Bayati, 2020, Mlpso: a filter multi-label feature selection based on particle swarm optimization, 1
Emary, 2016, Binary grey wolf optimization approaches for feature selection, Neurocomputing, 172, 371, 10.1016/j.neucom.2015.06.083
Al-Tashi, 2019, Binary optimization using hybrid grey wolf optimization for feature selection, IEEE Access, 7, 39496, 10.1109/ACCESS.2019.2906757
Hu, 2018, Feature selection for optimized high-dimensional biomedical data using an improved shuffled frog leaping algorithm, IEEE/ACM Trans. Comput. Biol. Bioinform., 15, 1765, 10.1109/TCBB.2016.2602263
A. Hammouri, Binary dragonfly algorithm for feature selection, in: 2017 International Conference on New Trends in Computing Sciences, 2017.
Brezocnik, 2018, Swarm intelligence algorithms for feature selection: a review, Appl. Sci., 8, 10.3390/app8091521
Ma, 2018, Multi-population techniques in nature inspired optimization algorithms: A comprehensive survey, Swarm Evol. Comput., 44, 365, 10.1016/j.swevo.2018.04.011
Li, 2017, Seeking multiple solutions: an updated survey on niching methods and their applications, IEEE Trans. Evol. Comput., 21, 518, 10.1109/TEVC.2016.2638437
Yang, 2017, Multimodal estimation of distribution algorithms, IEEE Trans. Cybern., 47, 636, 10.1109/TCYB.2016.2523000
Mahdaviani, 2015, Lade: learning automata based differential evolution, Int. J. Artif. Intell. Tools, 24, 10.1142/S0218213015500232
Hui, 2016, Ensemble and arithmetic recombination-based speciation differential evolution for multimodal optimization, IEEE Trans. Cybern., 46, 64, 10.1109/TCYB.2015.2394466
A. Tangherloni, L. Rundo, S. Spolaor, P. Cazzaniga, M.S. Nobile, GPU-powered multi-swarm parameter estimation of biological systems: a master–slave approach, in: Proc. 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), 2018, pp. 698-705.
Yue, 2018, A multi-objective particle swarm optimizer using ring topology for solving multimodal multi-objective problems, IEEE Trans. Evol. Comput., 22, 805, 10.1109/TEVC.2017.2754271
Yang, 2017, Adaptive multimodal continuous ant colony optimization, IEEE Trans. Evol. Comput., 21, 10.1109/TEVC.2016.2591064
Qu, 2012, Differential evolution with neighborhood mutation for multimodal optimization, IEEE Trans. Evol. Comput., 16, 601, 10.1109/TEVC.2011.2161873
Li, 2013
Z.-G. Chen, Z.-H. Zhan, D. Liu, S. Kwong, J. Zhang, Particle swarm optimization with hybrid ring topology for multimodal optimization problems, in: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, Canada, 2020, 2020, pp. 2044-2049.
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. IEEE Int. Conf. Neural Netw., Vol. 4. 1995, pp. 1942-1948.
L. Lv, Z. Chen, Z. Lu, A novel neural-network gradient optimization algorithm based on reinforcement learning, in: 2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC), 2019, pp. 106-111.
Sun, 2019, Facilitating social collaboration in mobile cloud-based learning: a teamwork as a service (taas) approach, IEEE Trans. Learn. Technol., 7, 207, 10.1109/TLT.2014.2340402
S. Spolaor, A. Tangherloni, L. Rundo, M.S. Nobile, P. Cazzaniga, Reboot strategies in particle swarm optimization and their impact on parameter estimation of biochemical systems, in: Proc. 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2017, pp. 1-8.
Yang, 2018, A level-based learning swarm optimizer for large-scale optimization, IEEE Trans. Evol. Comput., 22, 578, 10.1109/TEVC.2017.2743016
Engelbrecht, 2002
Cioppa, 2007, Where are the niches? dynamic fitness sharing, IEEE Trans. Evol. Comput., 11, 453, 10.1109/TEVC.2006.882433
R. Thomsen, Multimodal optimization using crowding-based differential evolution, in: Proc. IEEE Congr. Evol. Comput., 2. Portland, OR, USA, 2004, pp. 1382-1389.
X. Li, Efficient differential evolution using speciation for multimodal function optimization, in: Proc. Genet. Evol. Comput. Conf., Washington, DC, USA, 2005, pp. 873-880.
Shi. Cheng, Quande. Qin, Zhou. Wu, et al. Multimodal optimization using particle swarm optimization algorithms: CEC 2015 competition on single objective multi-niche optimization, in: 2015 IEEE Congress on Evolutionary Computation (CEC), 2015, pp. 1075-1082.
Li, 2010, Niching without niching parameters: Particle swarm optimization using a ring topology, IEEE Trans. Evol. Comput., 14, 150, 10.1109/TEVC.2009.2026270
Qu, 2012, Niching particle swarm optimization with local search for multimodal optimization, Inform. Sci., 197, 131, 10.1016/j.ins.2012.02.011
P.M. Murphy, D.W. Aha, UCI Repository of Machine Learning Databases, Tech. Rep., Dept. Inf. Comput. Sci. University of California, Irvine, CA, USA, [Online]. Available: http://www.ics.uci.edu/mlearn/MLRepository.html.
Chang, 2011, LIBSVM: a library for support vector machines, ACM Trans. Intell. Syst. Technol. (TIST), 2, 1