Multimodal neural probes for combined optogenetics and electrophysiology
Tài liệu tham khảo
Abouraddy, 2007, Towards multimaterial multifunctional fibres that see, hear, sense and communicate, Nat. Mater., 6, 336, 10.1038/nmat1889
Airan, 2009, Temporally precise in vivo control of intracellular signalling, Nature, 458, 1025, 10.1038/nature07926
All, 2019, Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation, Adv. Mater., 31, 1803474, 10.1002/adma.201803474
Altuna, 2013, SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain, Lab. Chip., 13, 1422, 10.1039/c3lc41364k
Anikeeva, 2012, Optetrode: a multichannel readout for optogenetic control in freely moving mice, Nat. Neurosci., 15, 163, 10.1038/nn.2992
Arenkiel, 2007, In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2, Neuron, 54, 205, 10.1016/j.neuron.2007.03.005
Bedbrook, 2019, Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics, Nat. Methods, 16, 1176, 10.1038/s41592-019-0583-8
Biran, 2005, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays, Exp. Neurol., 195, 115, 10.1016/j.expneurol.2005.04.020
Borchers, 2012, Direct electrical stimulation of human cortex - the gold standard for mapping brain functions?, Nat. Rev. Neurosci., 13, 63, 10.1038/nrn3140
Boyden, 2005, Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263, 10.1038/nn1525
Buzsáki, 2004, Large-scale recording of neuronal ensembles, Nat. Neurosci., 7, 446, 10.1038/nn1233
Buzsáki, 2015, Tools for probing local circuits: high-density silicon probes combined with optogenetics, Neuron, 86, 92, 10.1016/j.neuron.2015.01.028
Canales, 2015, Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo, Nat. Biotech., 33, 277, 10.1038/nbt.3093
Cardin, 2010, Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2, Nat. Protoc., 5, 247, 10.1038/nprot.2009.228
Chen, 2017, Neural recording and modulation technologies, Nat. Rev. Mater., 2, 16093, 10.1038/natrevmats.2016.93
Chen, 2018, Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics, Science, 359, 679, 10.1126/science.aaq1144
Chen, 2021, Deep brain optogenetics without intracranial surgery, Nat. Biotechnol., 39, 161, 10.1038/s41587-020-0679-9
Chung, 2019, High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays, Neuron, 101, 21, 10.1016/j.neuron.2018.11.002
Cogan, 2008, Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 10, 275, 10.1146/annurev.bioeng.10.061807.160518
Deisseroth, 2011, Optogenetics, Nat. Methods, 8, 26, 10.1038/nmeth.f.324
Deisseroth, 2015, Optogenetics 10 years of microbial opsins in neuroscience, Nat. Neuronsci., 18, 1213, 10.1038/nn.4091
Fernández-García, 2016, Safety and tolerability of silk fibroin hydrogels implanted into the mouse brain, Acta Biomater., 45, 262, 10.1016/j.actbio.2016.09.003
Frank, 2019, Next-generation interfaces for studying neural function, Nat. Biotechnol., 37, 1013, 10.1038/s41587-019-0198-8
Fu, 2017, Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology, Proc. Natl. Acad. Sci. U S A, 114, E10046, 10.1073/pnas.1717695114
Gradinaru, 2008, eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications, Brain Cell Biol., 36, 129, 10.1007/s11068-008-9027-6
Gradinaru, 2009, Optical deconstruction of parkinsonian neural circuitry, Science, 324, 354, 10.1126/science.1167093
Grosenick, 2015, Closed-loop and activity-guided optogenetic control, Neuron, 86, 106, 10.1016/j.neuron.2015.03.034
Guan, 2019, Elastocapillary self-assembled neurotassels for stable neural activity recordings, Sci. Adv., 5, eaav2842, 10.1126/sciadv.aav2842
Gutruf, 2018, Implantable, wireless device platforms for neuroscience research, Curr. Opin. Neurobiol., 50, 42, 10.1016/j.conb.2017.12.007
Han, 2009, Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain, Neuron, 62, 191, 10.1016/j.neuron.2009.03.011
He, 2020, Ultraflexible neural electrodes for long-lasting intracortical recording, iScience, 23, 101387, 10.1016/j.isci.2020.101387
Herculano-Houzel, 2009, The human brain in numbers: a linearly scaled-up primate brain, Front. Hum. Neurosci., 3, 31, 10.3389/neuro.09.031.2009
Hong, 2019, Novel electrode technologies for neural recordings, Nat. Rev. Neurosci., 20, 330, 10.1038/s41583-019-0140-6
Hososhima, 2015, Near-infrared (NIR) up-conversion optogenetics, Sci. Rep., 5, 16533, 10.1038/srep16533
Jackman, 2018, Silk fibroin films facilitate single-step targeted expression of optogenetic proteins, Cell Rep., 22, 3351, 10.1016/j.celrep.2018.02.081
Jeong, 2015, Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics, Cell, 162, 662, 10.1016/j.cell.2015.06.058
Jiang, 2020, Spatially expandable fiber-based probes as a multifunctional deep brain interface, Nat. Commun., 11, 6115, 10.1038/s41467-020-19946-9
Jr, 2017, Syringe-injectable electronics with a plug-and-play input/output interface, Nano. Lett., 17, 5836, 10.1021/acs.nanolett.7b03081
Kim, 2010, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics, Nat. Mater., 9, 511, 10.1038/nmat2745
Kim, 2013, Injectable, cellular-scale optoelectronics with applications for wireless optogenetics, Science, 340, 211, 10.1126/science.1232437
Kim, 2017, Integration of optogenetics with complementary methodologies in systems neuroscience, Nat. Rev. Neurosci., 18, 222, 10.1038/nrn.2017.15
Kim, 2020, Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes, Nat. Commun., 11, 2063, 10.1038/s41467-020-15769-w
Kim, 2020, HectoSTAR microLED optoelectrodes for large-scale, high-precision in invo opto-electrophysiology, bioRxiv
Kohara, 2014, Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits, Nat. Neurosci., 17, 269, 10.1038/nn.3614
Kozai, 2015, Photoelectric artifact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities, J. Mater. Chem. B, 3, 4965, 10.1039/C5TB00108K
Kozai, 2015, Brain tissue responses to neural implants impact signal sensitivity and intervention strategies, ACS Chem. Neurosci., 6, 48, 10.1021/cn500256e
Kuo, 2018, Approaches to closed-loop deep brain stimulation for movement disorders, Neurosurg. Focus, 45, E2, 10.3171/2018.5.FOCUS18173
Lago, 2017, Flexible and organic neural interfaces: a Review, App. Sci., 7, 1292, 10.3390/app7121292
LeChasseur, 2011, A microprobe for parallel optical and electrical recordings from single neurons in vivo, Nat. Methods, 8, 319, 10.1038/nmeth.1572
Li, 2019, Spatiotemporal constraints on optogenetic inactivation in cortical circuits, eLife, 8, e48622, 10.7554/eLife.48622
Li, 2020, Bioinspired flexible electronics for seamless neural interfacing and chronic recording, Nanoscale Adv., 2, 3095, 10.1039/D0NA00323A
Lin, 2017, Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles, Adv. Healthc. Mater., 6, 1700446, 10.1002/adhm.201700446
Lin, 2018, Core-shell-shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition, Nano. Lett., 18, 948, 10.1021/acs.nanolett.7b04339
Ma, 2019, Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae, Cell, 177, 243, 10.1016/j.cell.2019.01.038
Madisen, 2010, A robust and high-throughput Cre reporting and characterization system for the whole mouse brain, Nat. Neurosci., 13, 133, 10.1038/nn.2467
McCall, 2013, Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics, Nat. Protoc., 8, 2413, 10.1038/nprot.2013.158
McCall, 2017, Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics, Nat. Protoc., 12, 219, 10.1038/nprot.2016.155
Mickle, 2019, A wireless closed-loop system for optogenetic peripheral neuromodulation, Nature, 565, 361, 10.1038/s41586-018-0823-6
Miyazaki, 2019, Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles, Cell Rep., 26, 1033, 10.1016/j.celrep.2019.01.001
Noh, 2018, Miniaturized, battery-Free optofluidic systems with potential for wireless pharmacology and optogenetics, Small, 14, 1702479, 10.1002/smll.201702479
O’Shea, 2018, Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys, Sci. Rep., 8, 6775, 10.1038/s41598-018-24362-7
Paoletti, 2019, Optical control of neuronal ion channels and receptors, Nat. Rev. Neurosci., 20, 514, 10.1038/s41583-019-0197-2
Park, 2017, One-step optogenetics with multifunctional flexible polymer fibers, Nat. Neurosci., 20, 612, 10.1038/nn.4510
Park, 2019, Flexible fiber-based optoelectronics for neural interfaces, Chem. Soc. Rev., 48, 1826, 10.1039/C8CS00710A
Pastrana, 2011, Optogenetics: controlling cell function with light, Nat. Methods, 8, 24, 10.1038/nmeth.f.323
Pisanello, 2017, Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber, Nat. Neurosci., 20, 1180, 10.1038/nn.4591
Qazi, 2019, Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation, Nat. Biomed. Eng., 3, 655, 10.1038/s41551-019-0432-1
Raja, 2013, Transdermal delivery devices: fabrication, mechanics and drug release from silk, Small, 9, 3704, 10.1002/smll.201202075
Royer, 2010, Multi-array silicon probes with integrated optical fibers light assisted perturbation and recording of local neural circuits in the behaving animal, Eur. J. Neurosci., 31, 2279, 10.1111/j.1460-9568.2010.07250.x
Royer, 2012, Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition, Nat. Neurosci., 15, 769, 10.1038/nn.3077
Scharf, 2016, Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe, Sci. Rep., 6, 28381, 10.1038/srep28381
Shin, 2015, Neural probes with multi-drug delivery capability, Lab. Chip, 15, 3730, 10.1039/C5LC00582E
Schwaerzle, 2013, Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications
Shin, 2017, Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics, Neuron, 93, 509, 10.1016/j.neuron.2016.12.031
Sim, 2017, Microfluidic neural probes: in vivo tools for advancing neuroscience, Lab. Chip, 17, 1406, 10.1039/C7LC00103G
Spieth, 2012, An intra-cerebral drug delivery system for freely moving animals, Biomed. Microdevices, 14, 799, 10.1007/s10544-012-9659-2
Stark, 2012, Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals, J. Neurophysiol., 108, 349, 10.1152/jn.00153.2012
Steinmetz, 2020, Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings, Science, 372, eabf4588, 10.1126/science.abf4588
Tao, 2015, Multimaterial fibers, 56, 1, 10.1007/978-3-319-06998-2_1
Tehovnik, 1996, Electrical stimulation of neural tissue to evoke behavioral responses, J. Neurosci. Meth., 65, 1, 10.1016/0165-0270(95)00131-X
Tien, 2013, Silk as a Multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes, Adv. Funct. Mater., 23, 3185, 10.1002/adfm.201203716
Tsai, 2009, Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning, Science, 324, 1080, 10.1126/science.1168878
Tye, 2012, Optogenetic investigation of neural circuits underlying brain disease in animal models, Nat. Rev. Neurosci., 13, 251, 10.1038/nrn3171
Tye, 2011, Amygdala circuitry mediating reversible and bidirectional control of anxiety, Nature, 471, 358, 10.1038/nature09820
Vázquez-Guardado, 2020, Recent advances in neurotechnologies with broad potential for neuroscience research, Nat. Neurosci., 23, 1522, 10.1038/s41593-020-00739-8
Won, 2020, Emerging modalities and implantable technologies for neuromodulation, Cell, 181, 115, 10.1016/j.cell.2020.02.054
Wu, 2013, An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications, J. Neural Eng., 10, 056012, 10.1088/1741-2560/10/5/056012
Wu, 2015, Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals, Neuron, 88, 1136, 10.1016/j.neuron.2015.10.032
Xie, 2015, Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes, Nat. Mater., 14, 1286, 10.1038/nmat4427
Yaman, 2011, Arrays of indefinitely long uniform nanowires and nanotubes, Nat. Mater., 10, 494, 10.1038/nmat3038
Yin, 2018, Swellable silk fibroin microneedles for transdermal drug delivery, Int. J. Biol. Macromol., 106, 48, 10.1016/j.ijbiomac.2017.07.178
Zhang, 2008, Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri, Nat. Neurosci., 11, 631, 10.1038/nn.2120
Zhang, 2010, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures, Nat. Protoc., 5, 439, 10.1038/nprot.2009.226
Zhang, 2019, Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics, Proc. Natl. Acad. Sci. U S A, 116, 21427, 10.1073/pnas.1909850116
Zhang, 2021, A prototype closed -loopbrain -machineinterface for the study and treatment of pain, Nat. Biomed. Eng., 10.1038/s41551-021-00736-7
Zheng, 2019, Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications, Nano Today, 29, 100797, 10.1016/j.nantod.2019.100797
Zorzos, 2010, Multiwaveguide implantable probe for light delivery to sets of distributed brain targets, Opt. Lett., 35, 4133, 10.1364/OL.35.004133
Zou, 2021, Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology, Nat. Commun., 12, 5871, 10.1038/s41467-021-26168-0