Multimodal neural probes for combined optogenetics and electrophysiology

iScience - Tập 25 - Trang 103612 - 2022
Huihui Tian1, Ke Xu1,2,3, Liang Zou1,2,3, Ying Fang1,2,3
1CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
2CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
3University of Chinese Academy of Sciences, Beijing, 100049, China

Tài liệu tham khảo

Abouraddy, 2007, Towards multimaterial multifunctional fibres that see, hear, sense and communicate, Nat. Mater., 6, 336, 10.1038/nmat1889 Airan, 2009, Temporally precise in vivo control of intracellular signalling, Nature, 458, 1025, 10.1038/nature07926 All, 2019, Expanding the toolbox of upconversion nanoparticles for in vivo optogenetics and neuromodulation, Adv. Mater., 31, 1803474, 10.1002/adma.201803474 Altuna, 2013, SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain, Lab. Chip., 13, 1422, 10.1039/c3lc41364k Anikeeva, 2012, Optetrode: a multichannel readout for optogenetic control in freely moving mice, Nat. Neurosci., 15, 163, 10.1038/nn.2992 Arenkiel, 2007, In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2, Neuron, 54, 205, 10.1016/j.neuron.2007.03.005 Bedbrook, 2019, Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics, Nat. Methods, 16, 1176, 10.1038/s41592-019-0583-8 Biran, 2005, Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays, Exp. Neurol., 195, 115, 10.1016/j.expneurol.2005.04.020 Borchers, 2012, Direct electrical stimulation of human cortex - the gold standard for mapping brain functions?, Nat. Rev. Neurosci., 13, 63, 10.1038/nrn3140 Boyden, 2005, Millisecond-timescale, genetically targeted optical control of neural activity, Nat. Neurosci., 8, 1263, 10.1038/nn1525 Buzsáki, 2004, Large-scale recording of neuronal ensembles, Nat. Neurosci., 7, 446, 10.1038/nn1233 Buzsáki, 2015, Tools for probing local circuits: high-density silicon probes combined with optogenetics, Neuron, 86, 92, 10.1016/j.neuron.2015.01.028 Canales, 2015, Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo, Nat. Biotech., 33, 277, 10.1038/nbt.3093 Cardin, 2010, Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2, Nat. Protoc., 5, 247, 10.1038/nprot.2009.228 Chen, 2017, Neural recording and modulation technologies, Nat. Rev. Mater., 2, 16093, 10.1038/natrevmats.2016.93 Chen, 2018, Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics, Science, 359, 679, 10.1126/science.aaq1144 Chen, 2021, Deep brain optogenetics without intracranial surgery, Nat. Biotechnol., 39, 161, 10.1038/s41587-020-0679-9 Chung, 2019, High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays, Neuron, 101, 21, 10.1016/j.neuron.2018.11.002 Cogan, 2008, Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 10, 275, 10.1146/annurev.bioeng.10.061807.160518 Deisseroth, 2011, Optogenetics, Nat. Methods, 8, 26, 10.1038/nmeth.f.324 Deisseroth, 2015, Optogenetics 10 years of microbial opsins in neuroscience, Nat. Neuronsci., 18, 1213, 10.1038/nn.4091 Fernández-García, 2016, Safety and tolerability of silk fibroin hydrogels implanted into the mouse brain, Acta Biomater., 45, 262, 10.1016/j.actbio.2016.09.003 Frank, 2019, Next-generation interfaces for studying neural function, Nat. Biotechnol., 37, 1013, 10.1038/s41587-019-0198-8 Fu, 2017, Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology, Proc. Natl. Acad. Sci. U S A, 114, E10046, 10.1073/pnas.1717695114 Gradinaru, 2008, eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications, Brain Cell Biol., 36, 129, 10.1007/s11068-008-9027-6 Gradinaru, 2009, Optical deconstruction of parkinsonian neural circuitry, Science, 324, 354, 10.1126/science.1167093 Grosenick, 2015, Closed-loop and activity-guided optogenetic control, Neuron, 86, 106, 10.1016/j.neuron.2015.03.034 Guan, 2019, Elastocapillary self-assembled neurotassels for stable neural activity recordings, Sci. Adv., 5, eaav2842, 10.1126/sciadv.aav2842 Gutruf, 2018, Implantable, wireless device platforms for neuroscience research, Curr. Opin. Neurobiol., 50, 42, 10.1016/j.conb.2017.12.007 Han, 2009, Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain, Neuron, 62, 191, 10.1016/j.neuron.2009.03.011 He, 2020, Ultraflexible neural electrodes for long-lasting intracortical recording, iScience, 23, 101387, 10.1016/j.isci.2020.101387 Herculano-Houzel, 2009, The human brain in numbers: a linearly scaled-up primate brain, Front. Hum. Neurosci., 3, 31, 10.3389/neuro.09.031.2009 Hong, 2019, Novel electrode technologies for neural recordings, Nat. Rev. Neurosci., 20, 330, 10.1038/s41583-019-0140-6 Hososhima, 2015, Near-infrared (NIR) up-conversion optogenetics, Sci. Rep., 5, 16533, 10.1038/srep16533 Jackman, 2018, Silk fibroin films facilitate single-step targeted expression of optogenetic proteins, Cell Rep., 22, 3351, 10.1016/j.celrep.2018.02.081 Jeong, 2015, Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics, Cell, 162, 662, 10.1016/j.cell.2015.06.058 Jiang, 2020, Spatially expandable fiber-based probes as a multifunctional deep brain interface, Nat. Commun., 11, 6115, 10.1038/s41467-020-19946-9 Jr, 2017, Syringe-injectable electronics with a plug-and-play input/output interface, Nano. Lett., 17, 5836, 10.1021/acs.nanolett.7b03081 Kim, 2010, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics, Nat. Mater., 9, 511, 10.1038/nmat2745 Kim, 2013, Injectable, cellular-scale optoelectronics with applications for wireless optogenetics, Science, 340, 211, 10.1126/science.1232437 Kim, 2017, Integration of optogenetics with complementary methodologies in systems neuroscience, Nat. Rev. Neurosci., 18, 222, 10.1038/nrn.2017.15 Kim, 2020, Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes, Nat. Commun., 11, 2063, 10.1038/s41467-020-15769-w Kim, 2020, HectoSTAR microLED optoelectrodes for large-scale, high-precision in invo opto-electrophysiology, bioRxiv Kohara, 2014, Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits, Nat. Neurosci., 17, 269, 10.1038/nn.3614 Kozai, 2015, Photoelectric artifact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities, J. Mater. Chem. B, 3, 4965, 10.1039/C5TB00108K Kozai, 2015, Brain tissue responses to neural implants impact signal sensitivity and intervention strategies, ACS Chem. Neurosci., 6, 48, 10.1021/cn500256e Kuo, 2018, Approaches to closed-loop deep brain stimulation for movement disorders, Neurosurg. Focus, 45, E2, 10.3171/2018.5.FOCUS18173 Lago, 2017, Flexible and organic neural interfaces: a Review, App. Sci., 7, 1292, 10.3390/app7121292 LeChasseur, 2011, A microprobe for parallel optical and electrical recordings from single neurons in vivo, Nat. Methods, 8, 319, 10.1038/nmeth.1572 Li, 2019, Spatiotemporal constraints on optogenetic inactivation in cortical circuits, eLife, 8, e48622, 10.7554/eLife.48622 Li, 2020, Bioinspired flexible electronics for seamless neural interfacing and chronic recording, Nanoscale Adv., 2, 3095, 10.1039/D0NA00323A Lin, 2017, Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles, Adv. Healthc. Mater., 6, 1700446, 10.1002/adhm.201700446 Lin, 2018, Core-shell-shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition, Nano. Lett., 18, 948, 10.1021/acs.nanolett.7b04339 Ma, 2019, Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae, Cell, 177, 243, 10.1016/j.cell.2019.01.038 Madisen, 2010, A robust and high-throughput Cre reporting and characterization system for the whole mouse brain, Nat. Neurosci., 13, 133, 10.1038/nn.2467 McCall, 2013, Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics, Nat. Protoc., 8, 2413, 10.1038/nprot.2013.158 McCall, 2017, Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics, Nat. Protoc., 12, 219, 10.1038/nprot.2016.155 Mickle, 2019, A wireless closed-loop system for optogenetic peripheral neuromodulation, Nature, 565, 361, 10.1038/s41586-018-0823-6 Miyazaki, 2019, Large timescale interrogation of neuronal function by fiberless optogenetics using lanthanide micro-particles, Cell Rep., 26, 1033, 10.1016/j.celrep.2019.01.001 Noh, 2018, Miniaturized, battery-Free optofluidic systems with potential for wireless pharmacology and optogenetics, Small, 14, 1702479, 10.1002/smll.201702479 O’Shea, 2018, Development of an optogenetic toolkit for neural circuit dissection in squirrel monkeys, Sci. Rep., 8, 6775, 10.1038/s41598-018-24362-7 Paoletti, 2019, Optical control of neuronal ion channels and receptors, Nat. Rev. Neurosci., 20, 514, 10.1038/s41583-019-0197-2 Park, 2017, One-step optogenetics with multifunctional flexible polymer fibers, Nat. Neurosci., 20, 612, 10.1038/nn.4510 Park, 2019, Flexible fiber-based optoelectronics for neural interfaces, Chem. Soc. Rev., 48, 1826, 10.1039/C8CS00710A Pastrana, 2011, Optogenetics: controlling cell function with light, Nat. Methods, 8, 24, 10.1038/nmeth.f.323 Pisanello, 2017, Dynamic illumination of spatially restricted or large brain volumes via a single tapered optical fiber, Nat. Neurosci., 20, 1180, 10.1038/nn.4591 Qazi, 2019, Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation, Nat. Biomed. Eng., 3, 655, 10.1038/s41551-019-0432-1 Raja, 2013, Transdermal delivery devices: fabrication, mechanics and drug release from silk, Small, 9, 3704, 10.1002/smll.201202075 Royer, 2010, Multi-array silicon probes with integrated optical fibers light assisted perturbation and recording of local neural circuits in the behaving animal, Eur. J. Neurosci., 31, 2279, 10.1111/j.1460-9568.2010.07250.x Royer, 2012, Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition, Nat. Neurosci., 15, 769, 10.1038/nn.3077 Scharf, 2016, Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe, Sci. Rep., 6, 28381, 10.1038/srep28381 Shin, 2015, Neural probes with multi-drug delivery capability, Lab. Chip, 15, 3730, 10.1039/C5LC00582E Schwaerzle, 2013, Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications Shin, 2017, Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics, Neuron, 93, 509, 10.1016/j.neuron.2016.12.031 Sim, 2017, Microfluidic neural probes: in vivo tools for advancing neuroscience, Lab. Chip, 17, 1406, 10.1039/C7LC00103G Spieth, 2012, An intra-cerebral drug delivery system for freely moving animals, Biomed. Microdevices, 14, 799, 10.1007/s10544-012-9659-2 Stark, 2012, Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals, J. Neurophysiol., 108, 349, 10.1152/jn.00153.2012 Steinmetz, 2020, Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings, Science, 372, eabf4588, 10.1126/science.abf4588 Tao, 2015, Multimaterial fibers, 56, 1, 10.1007/978-3-319-06998-2_1 Tehovnik, 1996, Electrical stimulation of neural tissue to evoke behavioral responses, J. Neurosci. Meth., 65, 1, 10.1016/0165-0270(95)00131-X Tien, 2013, Silk as a Multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes, Adv. Funct. Mater., 23, 3185, 10.1002/adfm.201203716 Tsai, 2009, Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning, Science, 324, 1080, 10.1126/science.1168878 Tye, 2012, Optogenetic investigation of neural circuits underlying brain disease in animal models, Nat. Rev. Neurosci., 13, 251, 10.1038/nrn3171 Tye, 2011, Amygdala circuitry mediating reversible and bidirectional control of anxiety, Nature, 471, 358, 10.1038/nature09820 Vázquez-Guardado, 2020, Recent advances in neurotechnologies with broad potential for neuroscience research, Nat. Neurosci., 23, 1522, 10.1038/s41593-020-00739-8 Won, 2020, Emerging modalities and implantable technologies for neuromodulation, Cell, 181, 115, 10.1016/j.cell.2020.02.054 Wu, 2013, An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications, J. Neural Eng., 10, 056012, 10.1088/1741-2560/10/5/056012 Wu, 2015, Monolithically integrated μLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals, Neuron, 88, 1136, 10.1016/j.neuron.2015.10.032 Xie, 2015, Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes, Nat. Mater., 14, 1286, 10.1038/nmat4427 Yaman, 2011, Arrays of indefinitely long uniform nanowires and nanotubes, Nat. Mater., 10, 494, 10.1038/nmat3038 Yin, 2018, Swellable silk fibroin microneedles for transdermal drug delivery, Int. J. Biol. Macromol., 106, 48, 10.1016/j.ijbiomac.2017.07.178 Zhang, 2008, Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri, Nat. Neurosci., 11, 631, 10.1038/nn.2120 Zhang, 2010, Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures, Nat. Protoc., 5, 439, 10.1038/nprot.2009.226 Zhang, 2019, Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics, Proc. Natl. Acad. Sci. U S A, 116, 21427, 10.1073/pnas.1909850116 Zhang, 2021, A prototype closed -loopbrain -machineinterface for the study and treatment of pain, Nat. Biomed. Eng., 10.1038/s41551-021-00736-7 Zheng, 2019, Recent advances in upconversion nanocrystals: expanding the kaleidoscopic toolbox for emerging applications, Nano Today, 29, 100797, 10.1016/j.nantod.2019.100797 Zorzos, 2010, Multiwaveguide implantable probe for light delivery to sets of distributed brain targets, Opt. Lett., 35, 4133, 10.1364/OL.35.004133 Zou, 2021, Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology, Nat. Commun., 12, 5871, 10.1038/s41467-021-26168-0