Multimodal molecular imaging evaluation for early diagnosis and prognosis of cholangiocarcinoma
Tóm tắt
Cholangiocarcinoma (CCA) is an aggressive and lethal malignancy with limited therapeutic options. Despite recent advances in diagnostic imaging for CCA, the early diagnosis of CCA and evaluation of tumor invasion into the bile duct and its surrounding tissues remain challenging. Most patients with CCA are diagnosed at an advanced stage, at which treatment options are limited. Molecular imaging is a promising diagnostic method for noninvasive imaging of biological events at the cellular and molecular level in vivo. Molecular imaging plays a key role in the early diagnosis, staging, and treatment-related evaluation and management of cancer. This review will describe different methods for molecular imaging of CCA, including nuclear medicine, magnetic resonance imaging, optical imaging, and multimodal imaging. The main challenges and future directions in this field are also discussed.
Tài liệu tham khảo
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ (2018) Cholangiocarcinoma—evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 15(2):95–111
Mahipal A, Kommalapati A, Tella SH, Lim A, Kim R (2018) Novel targeted treatment options for advanced cholangiocarcinoma. Expert Opin Investig Drugs 27(9):709–720
Razumilava N, Gores GJ (2014) Cholangiocarcinoma. The Lancet 383(9935):2168–2179
Khan SA, Davidson BR, Goldin RD et al (2012) Guidelines for the diagnosis and treatment of cholangiocarcinoma: an update. Gut 61(12):1657–1669
Rizvi S, Gores GJ (2013) Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145(6):1215–1229
Rizvi S, Gores GJ (2017) Emerging molecular therapeutic targets for cholangiocarcinoma. J Hepatol 67(3):632–644
Krasinskas AM (2018) Cholangiocarcinoma. Surg Pathol Clin 11(2):403–429
Joo I, Lee JM, Yoon JH (2018) Imaging diagnosis of intrahepatic and perihilar cholangiocarcinoma: recent advances and challenges. Radiology 288(1):7–13
Mertens JC, Rizvi S, Gores GJ (2018) Targeting cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 1864:1454–1460
Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States part iii: liver, biliary tract, and pancreas. Gastroenterology 136(4):1134–1144
Lamarca A, Barriuso J, McNamara MG, Valle JW (2020) Molecular targeted therapies: ready for “prime time” in biliary tract cancer. J Hepatol 73(1):170–185
Esnaola NF, Meyer JE, Karachristos A, Maranki JL, Camp ER, Denlinger CS (2016) Evaluation and management of intrahepatic and extrahepatic cholangiocarcinoma. Cancer 122(9):1349–1369
Oliveira IS, Kilcoyne A, Everett JM, Mino-Kenudson M, Harisinghani MG, Ganesan K (2017) Cholangiocarcinoma: classification, diagnosis, staging, imaging features, and management. Abdom Radiol (NY) 42(6):1637–1649
Cameron K, Golan S, Simpson W et al (2011) Recurrent pancreatic carcinoma and cholangiocarcinoma: 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT). Abdom Imaging 36(4):463–471
Cui X-Y, Chen H-W (2010) Role of diffusion-weighted magnetic resonance imaging in the diagnosis of extrahepatic cholangiocarcinoma. World J Gastroenterol 16(25):3196–3201
Cui X-Y, Chen H-W, Cai S et al (2012) Diffusion-weighted MR imaging for detection of extrahepatic cholangiocarcinoma. Eur J Radiol 81(11):2961–2965
Jiang L, Tan H, Panje CM, Yu H, Xiu Y, Shi H (2016) Role of 18F-FDG PET/CT imaging in intrahepatic cholangiocarcinoma. Clin Nucl Med 41(1):1–7
Yoh T, Seo S, Morino K et al (2019) Reappraisal of prognostic impact of tumor SUVmax by F-FDG-PET/CT in intrahepatic cholangiocarcinoma. World J Surg 43(5):1323–1331
Liu XF, Tang K, Sui LL, Xu G (2014) Cholangiocarcinoma: present status and molecular aspects of diagnosis. Oncol Res 22(4):177–183
Njei B, McCarty TR, Varadarajulu S, Navaneethan U (2016) Systematic review with meta-analysis: endoscopic retrograde cholangiopancreatography-based modalities for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Aliment Pharmacol Ther 44(11–12):1139–1151
Breitenstein S, Apestegui C, Clavien PA (2008) Positron emission tomography (PET) for cholangiocarcinoma. HPB (Oxford) 10(2):120–121
Hennedige TP, Neo WT, Venkatesh SK (2014) Imaging of malignancies of the biliary tract- an update. Cancer Imaging 14:14
Mar WA, Shon AM, Lu Y et al (2016) Imaging spectrum of cholangiocarcinoma: role in diagnosis, staging, and posttreatment evaluation. Abdom Radiol (NY) 41(3):553–567
Charatcharoenwitthaya P, Enders FB, Halling KC, Lindor KD (2008) Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma in primary sclerosing cholangitis. Hepatology 48(4):1106–1117
Saluja SS, Sharma R, Pal S, Sahni P, Chattopadhyay TK (2007) Differentiation between benign and malignant hilar obstructions using laboratory and radiological investigations: a prospective study. HPB (Oxford) 9(5):373–382
Anderson CJ, Lewis JS (2017) Current status and future challenges for molecular imaging. Philos Trans A Math Phys Eng Sci.375(2107).
Cassidy PJ, Radda GK (2005) Molecular imaging perspectives. J R Soc Interface 2(3):133–144
England CG, Hernandez R, Eddine SB, Cai W (2016) Molecular imaging of pancreatic cancer with antibodies. Mol Pharm 13(1):8–24
Kluge R, Schmidt F, Caca K et al (2001) Positron emission tomography with [(18)F]fluoro-2-deoxy-D-glucose for diagnosis and staging of bile duct cancer. Hepatology 33(5):1029–1035
Moon CM, Bang S, Chung JB et al (2008) Usefulness of 18F-fluorodeoxyglucose positron emission tomography in differential diagnosis and staging of cholangiocarcinomas. J Gastroenterol Hepatol 23(5):759–765
Corvera CU, Blumgart LH, Akhurst T et al (2008) 18F-fluorodeoxyglucose positron emission tomography influences management decisions in patients with biliary cancer. J Am Coll Surg 206(1):57–65
Anderson CD, Rice MH, Pinson CW, Chapman WC, Chari RS, Delbeke D (2004) Fluorodeoxyglucose PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J Gastrointest Surg 8(1):90–97
Li J, Kuehl H, Grabellus F et al (2008) Preoperative assessment of hilar cholangiocarcinoma by dual-modality PET/CT. J Surg Oncol 98(6):438–443
Smith WL, Urade Y, Jakobsson PJ (2011) Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 111(10):5821–5865
Chang CW, Yeh CN, Chung YH et al (2018) Synthesis and evaluation of ortho-[(18)F] fluorocelecoxib for COX-2 cholangiocarcinoma imaging. Drug Des Devel Ther 12:1467–1478
Sirica AE (2005) Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology 41(1):5–15
Huang HL, Yeh CN, Lee WY et al (2013) [123I]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 34(13):3355–3365
Labib PL, Goodchild G, Pereira SP (2019) Molecular pathogenesis of cholangiocarcinoma. BMC Cancer 19(1):185
Rahnemai-Azar AA, Weisbrod A, Dillhoff M, Schmidt C, Pawlik TM (2017) Intrahepatic cholangiocarcinoma: Molecular markers for diagnosis and prognosis. Surg Oncol 26(2):125–137
Borad MJ, Champion MD, Egan JB et al (2014) Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma. PLoS Genet 10(2):e1004135
Walenkamp AME, Lapa C, Herrmann K, Wester HJ (2017) CXCR4 ligands: the next big hit? J Nucl Med 58(Suppl 2):77S-82S
Domanska UM, Kruizinga RC, Nagengast WB et al (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49(1):219–230
Demmer O, Gourni E, Schumacher U, Kessler H, Wester HJ (2011) PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem 6(10):1789–1791
Gourni E, Demmer O, Schottelius M et al (2011) PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med 52(11):1803–1810
Kircher M, Herhaus P, Schottelius M et al (2018) CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 32(8):503–511
Werner RA, Weich A, Schirbel A et al (2016) Intraindividual tumor heterogeneity in NET – Further insight by C-X-C motif chemokine receptor 4-directed imaging. Eur J Nucl Med Mol Imaging 44(3):553–554
Werner RA, Kircher S, Higuchi T et al (2019) CXCR4-directed imaging in solid tumors. Front Oncol 9:770
Detsky JS, Keith J, Conklin J et al (2017) Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology. J Neurooncol 134(2):433–441
Kim JE, Lee JM, Kim SH et al (2010) Differentiation of intraductal growing-type cholangiocarcinomas from nodular-type cholangiocarcinomas at biliary MR imaging with MR cholangiography. Radiology 257(2):364–372
Zhang H, Zhu J, Ke F et al (2015) Radiological imaging for assessing the respectability of hilar cholangiocarcinoma: a systematic review and meta-analysis. Biomed Res Int 2015:497942
Feng S-T, Wu L, Cai H et al (2015) Cholangiocarcinoma: spectrum of appearances on Gd-EOB-DTPA-enhanced MR imaging and the effect of biliary function on signal intensity. BMC Cancer 15:38
Taruno K, Kurita T, Kuwahata A et al (2019) Multicenter clinical trial on sentinel lymph node biopsy using superparamagnetic iron oxide nanoparticles and a novel handheld magnetic probe. J Surg Oncol 120(8):1391–1396
Kim MJ, Kim JH, Lim JS et al (2004) Detection and characterization of focal hepatic lesions: mangafodipir vs superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Resonan Imaging 20(4):612–621
Maurea S, Mainenti PP, Tambasco A et al (2014) Diagnostic accuracy of MR imaging to identify and characterize focal liver lesions: comparison between gadolinium and superparamagnetic iron oxide contrast media. Quant Imaging Med Surg 4(3):181–189
Polakova K, Mocikova I, Purova D et al (2016) Magnetic resonance cholangiopancreatography (MRCP) using new negative per-oral contrast agent based on superparamagnetic iron oxide nanoparticles for extrahepatic biliary duct visualization in liver cirrhosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 160(4):512–517
Yuan Y, He Y, Bo R et al (2018) A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. Nanoscale 10(46):21634–21639
Reichardt W, Hu-Lowe D, Torres D, Weissleder R, Bogdanov A Jr (2005) Imaging of VEGF receptor kinase inhibitor-induced antiangiogenic effects in drug-resistant human adenocarcinoma model. Neoplasia 7(9):847–853
Jun EJ, Song HY, Park JH et al (2018) In vivo fluorescence microendoscopic monitoring of stent-induced fibroblast cell proliferation in an esophageal mouse model. J Vasc Interv Radiol 29(12):1756–1763
Mezzanotte L, van ’t Root M, Karatas H, Goun EA, Lowik C (2017) In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35(7):640–652
Wells RG (2016) Instrumentation in molecular imaging. J Nucl Cardiol 23(6):1343–1347
Dubow M, Tatman PD, Shah RJ (2018) Individual probe based confocal laser endomicroscopy criteria in the analysis of indeterminate biliary strictures. Scand J Gastroenterol 53(10–11):1358–1363
Yokoyama H, Sasaki A, Yoshizawa T, Kijima H, Hakamada K, Yamada K (2016) Imaging hamster model of bile duct cancer in vivo using fluorescent L-glucose derivatives. Hum Cell 29(3):111–121
Wani S, Shah RJ (2013) Probe-based confocal laser endomicroscopy for the diagnosis of indeterminate biliary strictures. Curr Opin Gastroenterol 29(3):319–323
Sasaki A, Nagatomo K, Ono K et al (2016) Uptake of a fluorescent L-glucose derivative 2-NBDLG into three-dimensionally accumulating insulinoma cells in a phloretin-sensitive manner. Hum Cell 29(1):37–45
Yamada K, Saito M, Matsuoka H, Inagaki N (2007) A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Protoc 2(3):753–762
Thekkek N, Maru DM, Polydorides AD, Bhutani MS, Anandasabapathy S, Richards-Kortum R (2011) Pre-clinical evaluation of fluorescent deoxyglucose as a topical contrast agent for the detection of Barrett’s-associated neoplasia during confocal imaging. Technol Cancer Res Treat 10(5):431–441
Zhang C, Kimura R, Abou-Elkacem L, Levi J, Xu L, Gambhir SS (2016) A cystine knot peptide targeting integrin alphavbeta6 for photoacoustic and fluorescence imaging of tumors in living subjects. J Nucl Med 57(10):1629–1634
Alkhawaldeh K, Faltten S, Biersack H-J, Ezziddin S (2011) The value of F-18 FDG PET in patients with primary sclerosing cholangitis and cholangiocarcinoma using visual and semiquantitative analysis. Clin Nucl Med 36(10):879–883
Wakabayashi H, Akamoto S, Yachida S et al (2005) Significance of fluorodeoxyglucose PET imaging in the diagnosis of malignancies in patients with biliary stricture. Eur J Surg Oncol 31(10):1175–1179
Kim JY, Kim M-H, Lee TY et al (2008) Clinical role of 18F-FDG PET-CT in suspected and potentially operable cholangiocarcinoma: a prospective study compared with conventional imaging. Am J Gastroenterol 103(5):1145–1151
Ferrone C, Goyal L, Qadan M et al (2020) Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 47(8):1871–1884
Catalano OA, Rosen BR, Sahani DV et al (2013) Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients—a hypothesis-generating exploratory study. Radiology 269(3):857–869
Catalano OA, Nicolai E, Rosen BR et al (2015) Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 112(9):1452–1460
Yang X (2010) Interventional molecular imaging. Radiology 254(3):651–654
Takakusagi Y, Naz S, Takakusagi K et al (2018) A multimodal molecular imaging study evaluates pharmacological alteration of the tumor microenvironment to improve radiation response. Cancer Res 78(24):6828–6837
Zhang F, Bai Z, Shi Y, Wang J, Li Y, Yang X (2015) Interventional MRI-guided local delivery of agents into swine bile duct walls using MR-compatible needle-integrated balloon catheter system. NMR Biomed 28(6):679–684
Zhang F, Le T, Wu X et al (2014) Intrabiliary RF heat-enhanced local chemotherapy of a cholangiocarcinoma cell line: monitoring with dual-modality imaging–preclinical study. Radiology 270(2):400–408
Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580