Dự Đoán Giá Đa Mô Hình

Annals of Data Science - Tập 10 - Trang 619-635 - 2021
Aidin Zehtab-Salmasi1, Ali-Reza Feizi-Derakhshi1, Narjes Nikzad-Khasmakhi1, Meysam Asgari-Chenaghlu1, Saeideh Nabipour2
1Computerized Intelligence Systems Laboratory, Department of Computer Engineering, University of Tabriz, Tabriz, Iran
2Department Computer and Electrical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran

Tóm tắt

Dự đoán giá là một trong những ví dụ liên quan đến các nhiệm vụ dự báo và là một dự án dựa trên khoa học dữ liệu. Dự đoán giá phân tích dữ liệu và dự đoán chi phí của các sản phẩm mới. Mục tiêu của nghiên cứu này là đạt được một hệ thống dự đoán giá của một chiếc điện thoại di động dựa trên các thông số kỹ thuật của nó. Do đó, năm mô hình học sâu được đề xuất để dự đoán khoảng giá của một chiếc điện thoại di động, bao gồm một phương pháp đơn mô hình và bốn phương pháp đa mô hình. Các phương pháp đa mô hình dự đoán giá dựa trên các đặc điểm đồ họa và phi đồ họa của các điện thoại di động, ảnh hưởng quan trọng đến giá trị của chúng. Ngoài ra, để đánh giá hiệu quả của các phương pháp đề xuất, một bộ dữ liệu điện thoại di động đã được thu thập từ GSMArena. Kết quả thực nghiệm cho thấy điểm F1 là 88.3%, xác nhận rằng học đa mô hình dẫn đến các dự đoán chính xác hơn so với các kỹ thuật hiện tại.

Từ khóa

#Dự đoán giá #học sâu #mô hình đa phương thức #điện thoại di động #khoa học dữ liệu

Tài liệu tham khảo

Tien James M (2017) Internet of Things, Real-Time Decision Making, and Artificial Intelligence. Ann Data Sci, 4(2):149–178. ISSN 21985812. https://doi.org/10.1007/s40745-017-0112-5. https://link.springer.com/article/10.1007/s40745-017-0112-5 Olson DL, Shi Y (2007) Introduction to Business Data Mining. McGraw-Hill/Irwin series operations and decision sciences. McGraw Hill. ISBN 9780071244701. https://books.google.no/books?id=m_j4AAAACAAJ Sohrabi B, Mahmoudian P, Raeesi I (2012) A framework for improving e-commerce websites usability using a hybrid genetic algorithm and neural network system. Neural Comput Appl 21(5):1017–1029 Jian L, Wang C, Liu Y, Liang S, Yi W, Shi Y (2013) Parallel data mining techniques on graphics processing unit with compute unified device architecture (cuda). J Supercomput 64(3):942–967 Hiransha M, Gopalakrishnan EA, Menon Vijay Krishna, Soman KP (2018) NSE Stock Market Prediction Using Deep-Learning Models. In: Procedia Computer Science. https://doi.org/10.1016/j.procs.2018.05.050 Parmar I, Agarwal N, Saxena S, Arora R, Gupta S, Dhiman H, Chouhan L (2018) Stock market prediction using machine learning. In: ICSCCC 2018—1st International Conference on Secure Cyber Computing and Communications, pp 574–576. ISBN 9781538663738. https://doi.org/10.1109/ICSCCC.2018.8703332 de Pauli STZ, Kleina M, Bonat WH (2020) Comparing Artificial Neural Network Architectures for Brazilian Stock Market Prediction. Anna Data Sci, 7(4):613–628. ISSN 21985812. https://doi.org/10.1007/s40745-020-00305-w Singh R, Srivastava S (2017) Stock prediction using deep learning. Multimed Tools Appl. ISSN 15737721. https://doi.org/10.1007/s11042-016-4159-7 Karimuzzaman M, Islam N, Afroz S, Hossain MM (2021) Predicting Stock Market Price of Bangladesh: A Comparative Study of Linear Classification Models. Ann Data Sci, pp 1–18. ISSN 2198-5804. https://doi.org/10.1007/s40745-020-00318-5. http://link.springer.com/10.1007/s40745-020-00318-5 SenGupta I, Nganje W, Hanson E (2021) Refinements of Barndorff-Nielsen and Shephard Model: An Analysis of Crude Oil Price with Machine Learning. Ann Data Sci, 8(1):39–55. ISSN 21985812. https://doi.org/10.1007/s40745-020-00256-2. https://link.springer.com/article/10.1007/s40745-020-00256-2 Vilar J, Aneiros G, Raña P (2018) Prediction intervals for electricity demand and price using functional data. Int J Electr Power Energy Syst. ISSN 01420615. https://doi.org/10.1016/j.ijepes.2017.10.010 Abdella JA, Zaki N (2019) Khaled Shuaib, and Fahad Khan. Airline ticket price and demand prediction: A survey. ISSN 22131248 Lantseva A, Mukhina K, Nikishova A, Ivanov S, Knyazkov K (2015) Data-driven modeling of airlines pricing. In: Procedia Computer Science, volume 66, pp 267–276. Elsevier B.V. https://doi.org/10.1016/j.procs.2015.11.032 Azari A (apr 2019) Bitcoin price prediction: an arima approach. http://arxiv.org/abs/1904.05315 Kadiroglu Z, Akilotu BN, Sengur A (2019) Mechanism of bitcoin and investigation of the studies in the literature related to bitcoin. In: 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc., . ISBN 9781728139920. https://doi.org/10.1109/UBMYK48245.2019.8965449 Phaladisailoed T, Numnonda T (2018) Machine learning models comparison for bitcoin price prediction. In: Proceedings of 2018 10th International Conference on Information Technology and Electrical Engineering: Smart Technology for Better Society, ICITEE 2018, pp 506–511. Institute of Electrical and Electronics Engineers Inc., ISBN 9781538647394. https://doi.org/10.1109/ICITEED.2018.8534911 Lahmiri S, Bekiros S (2019) Cryptocurrency forecasting with deep learning chaotic neural networks. Chaos, Solitons and Fractals, 118:35–40. ISSN 09600779. https://doi.org/10.1016/j.chaos.2018.11.014 Ji S, Kim J, Im H (2019) A comparative study of bitcoin price prediction using deep learning. Mathematics. ISSN 22277390. https://doi.org/10.3390/math7100898 Park B, Bae JK (2015) Using machine learning algorithms for housing price prediction: the case of fairfax county, virginia housing data. Exp Syst Appl 42(6):2928–2934 Chandrashekhara KT, Thungamani M, Gireesh Babu CN, Manjunath TN (2019) Smartphone price prediction in retail industry using machine learning techniques. In: Lecture Notes in Electrical Engineering. ISBN 9789811358012. https://doi.org/10.1007/978-981-13-5802-9_34 Nasser IM, Al-Shawwa M (2019) Ann for predicting mobile phone price range. Technical report Asim M, Khan Z (2018) Mobile price class prediction using machine learning techniques. Int J Comput Appl 179(29):6–11. https://doi.org/10.5120/ijca2018916555 Asgari-Chenaghlu M, Feizi-Derakhshi MR, Farzinvash L, Balafar MA, Motamed C (2020) A multimodal deep learning approach for named entity recognition from social media. arXiv preprint arXiv:2001.06888 Nikzad-Khasmakhi N, Balafar MA, Feizi-Derakhshi MR, Motamed C (2020) Berters: Multimodal representation learning for expert recommendation system with transformer. arXiv preprint arXiv:2007.07229 Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J (2020) Deep learning based text classification: A comprehensive review. arXiv preprint arXiv:2004.03705 VasfiSisi N, Feizi Derakhshi MR (2013) Text classification with machine learning algorithms. J Basic Appl Sci Res 3(1):31–35 Sharma A. Mobile price classification—kaggle. https://www.kaggle.com/iabhishekofficial/mobile-price-classification Subhiksha S, Thota S, Sangeetha J (2020) Prediction of phone prices using machine learning techniques. In: Advances in Intelligent Systems and Computing, volume 1079, pp 781–789. Springer (2020). ISBN 9789811510960. https://doi.org/10.1007/978-981-15-1097-7_65 Pipalia K, Bhadja R (2020) Performance Evaluation of Different Supervised Learning Algorithms for Mobile Price Classification. 8:. ISSN 2321-9653. https://doi.org/10.22214/ijraset.2020.6302.www.ijraset.com LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput, 1(4): 541–551. ISSN 0899-7667. https://doi.org/10.1162/neco.1989.1.4.541 LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. In: Proceedings of the IEEE, 86(11):2278–2323. ISSN 00189219. https://doi.org/10.1109/5.726791 Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84–90. ISSN 15577317. https://doi.org/10.1145/3065386 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 07-12-June-2015, pp 1–9. IEEE Computer Society. ISBN 9781467369640. https://doi.org/10.1109/CVPR.2015.7298594 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2016-December, pp 2818–2826. IEEE Computer Society. ISBN 9781467388504. https://doi.org/10.1109/CVPR.2016.308 Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual connections on learning. In: 31st AAAI Conference on Artificial Intelligence, AAAI 2017, pp 4278–4284. AAAI press Review: Inception-v3 1st runner up (image classification) in ilsvrc 2015. https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-ilsvrc-2015-17915421f77c Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Support vector machines for multi-class classification problems. In: Optimization Based Data Mining: Theory and Applications, number 9780857295033, pp 47–60. Springer London. https://doi.org/10.1007/978-0-85729-504-0_3