Multimodal 3D rigid image registration based on expectation maximization

Health and Technology - Tập 10 - Trang 429-435 - 2019
M. J. Velázquez-Durán1, D. U. Campos-Delgado1, E. R. Arce-Santana1, A. R. Mejía-Rodríguez1
1Facultad de Ciencias, Universidad Autonóma de San Luis Potosí, San Luis Potosí, México

Tóm tắt

Image registration is an important task in medical imaging, capable of finding displacement fields to align two images of the same anatomic structure under different conditions (e.g. acquisition time and body position). Specifically, multimodal image registration is the process of aligning two or more images of the same scene using different image acquisition techniques. In fact, most of the current image registration approaches are based on Mutual Information (MI) as a similarity metric for image comparison; however, the cost function used in MI methods is difficult to optimize due to complex relationships between variables and pixels intensities. This work presents an Expectation Maximization (EM) 3D multimodal rigid registration approach, which introduces a low computational cost alternative with a linear optimization strategy and an intuitive relation among the free variables. Our approach was validated against a state-of-the-art MI-based technique with synthetic T1 MRI brain volumes. The EM 3D achieved a global average DICE index of 96.68 % with a computational time of 22.72 seconds, whereas the MI methodology reported 96.11 % and 35.13 seconds, respectively.

Tài liệu tham khảo

Arce-Santana E, Campos-Delgado D, Vigueras-Gómez F, Reducindo I, Mejía-Rodríguez A. Non-rigid multimodal image registration based on the expectation-maximization algorithm. Lect Notes Comput Sci 2014;8333:36–47. Arce-Santana ER, Campos-Delgado DU, Reducindo I, Mejia-Rodriguez AR. Multimodal image registration based on the expectation–maximisation methodology. IET Image Proc 2017;11:1246–1253(7). https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2017.0234. Baker S, Matthews I. Equivalence and efficiency of image alignment algorithms. Proceedings of the 2001 IEEE conference on computer vision and pattern recognition, vol 1, pp 1090–1097; 2001. Bron E E, van Tiel J, Smit H, Poot D H J, Niessen W J, Krestin G P, Weinans H, Oei E H G, Kotek G, Klein S. Image registration improves human knee cartilage t1 mapping with delayed gadolinium-enhanced mri of cartilage (dgemric). Eur Radiol 2012;23(1):246–252. Burt P J, Adelson E H. The laplacian pyramid as a compact image code. IEEE Transactions on Communications 1983;31:532– 540. Cocosco C A, Kollokian V, Kwan R K S, Pike G B, Evans A C. Brainweb: Online interface to a 3d mri simulated brain database. Neuroimage 1997;5:425. Crum W, Hartkens T, Hill D. Non-rigid image registration: theory and practice. Br J Radiol 2004;77 (SPEC. ISS. 2):S140– S153. de Groot M, Vernooij M W, Klein S, Ikram M A, Vos F M, Smith S M, Niessen W J, Andersson J L. Improving alignment in tract-based spatial statistics: Evaluation and optimization of image registration. Neuroimage 2013;76:400–411. Guyader J M, Bernardin L, Douglas N, Poot D, Niessen W, Klein S. Influence of image registration on apparent diffusion coefficient images computed from free-breathing diffusion mr images of the abdomen. J Magn Reson Imaging 2015;42(2):315– 330. Hill DLG, Batchelor PG, Holden M, Hawkes DJ. Medical image registration. Phys Med Biol 2001; 46(3):R1. http://stacks.iop.org/0031-9155/46/i=3/a=201. Klein S, Staring M, Murphy K, Viergever M A, Pluim JPW. Elastix: A toolbox for intensity-based medical image registration. IEEE Trans Med Imaging 2010;29(1):196–205. Murino V, Puppo E, Sona D, Cristani M, Sansone C. 2015. New trends in image analysis and processing – ICIAP 2015 workshops: ICIAP 2015 international workshops, BioFor, CTMR, RHEUMA, ISCA, MADiMa, SBMI, and QoEM, Genoa, Italy, September 7-8, 2015, Proceedings. Lecture Notes in Computer Science. Springer International Publishing. https://books.google.com.mx/books?id=nKxnCgAAQBAJ. Pluim J P W, Maintz J B A, Viergever M A. 2003. Mutual-information-based registration of medical images: a survey. IEEE Transcations on Medical Imaging, pp 986–1004. Risser LEA. Piecewise-diffeomorphic image registration: Application to the motion estimation between 3d ct lung images with sliding conditions. Med Image Anal 2012;17(2):182– 193. Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: A survey. IEEE Trans Med Imaging 2013;32(7):1153–1190.