Multimillion year thermal history of a porphyry copper deposit: application of U–Pb, 40Ar/39Ar and (U–Th)/He chronometers, Bajo de la Alumbrera copper–gold deposit, Argentina
Tóm tắt
Application of multiple chronometers (including U–Pb and 40Ar/39Ar geochronology and zircon and apatite (U–Th)/He thermochronology) to porphyry intrusions at the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina, reveals a complex history of reheating that spans millions of years. Previous U–Pb geochronology, combined with our new 40Ar/39Ar data, shows that the multiple porphyritic intrusions at Bajo de la Alumbrera were emplaced during two episodes, the first at about 8.0 Ma (P2 and associated porphyries) and the second about a million years later (Early and Late P3 porphyries). Complex overprinting alteration events have obscured the earliest hydrothermal history of the deposit. By contrast, 40Ar/39Ar data reveal the close temporal relationship of ore-bearing potassic alteration assemblages (7.12 ± 0.13 Ma; biotite) to the emplacement of the P3 intrusions. Consistent with low closure temperatures, younger ages have been determined for associated hydrothermal alkali feldspar (6.82 ± 0.05 Ma and 6.64 ± 0.09 Ma). The temperature-sensitive Ar data also record an unexpected prolonged cooling history (to below 200°C) extending to 5.9 Ma. Our data suggest that the Bajo de la Alumbrera system underwent protracted cooling, after the collapse of the main hydrothermal system, or that one or more low-temperature (~100–200°C) reheating events occurred after emplacement of the porphyritic intrusions at Bajo de la Alumbrera. These have been constrained in part by our new 40Ar/39Ar data (including multidomain diffusion modeling) and (U–Th)/He ages. Single-grain (U–Th)/He ages (n = 5) for phenocrystic zircon from P2 and P3 intrusive phases bracket these thermal events to between 6.9 (youngest crystallization of intrusion) and 5.1 Ma. Multidomain modeling of alkali feldspar data (from both igneous and hydrothermal crystals) is consistent with the deposit cooling rapidly from magmatic temperatures to below about 300°C, with a more protracted history down to 150°C. We conclude that the late-stage low-temperature (150 to 200°C) thermal anomaly localized at Bajo de la Alumbrera resulted from radiation of heat and/or fluids sourced from deeper-seated magma bodies, emplaced beneath the deposit. To produce the observed thermal longevity of the porphyry system, magma bodies underlying the Bajo de la Alumbrera deposit must have been repeatedly replenished by new magma batches. Without replenishment, crystallization of the source magma will occur, and heat release will stop, leading to rapid cooling (in less than ten thousand years). The influx of deep-seated magma may have caused the development of late low-temperature hydrothermal alteration assemblages at Bajo de la Alumbrera, at the same time that mineralization formed at Agua Rica, some 25 km away. All available chronologic data for the Bajo de la Alumbrera deposit suggest that the hydrothermal system was active episodically over at least a three-million and possibly up to a four-million-year period.
Tài liệu tham khảo
Allmendinger RW (1986) Tectonic development, southeastern border of the Puna Plateau, northwestern Argentine Andes. Geol Soc Am Bull 97:1070–1082
Arribas A Jr, Hedenquist JW, Itaya T, Okada T, Concepción RA, Garcia JS (1995) Contemporaneous formation of adjacent porphyry and epithermal Cu–Au deposits over 300 ka in northern Luzon, Philippines. Geology 23:337–340
Ballard JR, Palin JM, Williams IS, Campbell IH (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology 29:383–386
Barra F, Ruiz J, Mathur R, Titley S (2003) A Re–Os study of sulfide minerals from the Bagdad porphyry Cu–Mo deposit, northern Arizona, USA. Miner Depos 38:585–596
Black LP, Kamo SL, Williams IS, Roudolis C, Claoué-Long JC, Korsch RJm, Davis DW (2000) The quest for a high-quality zircon standard for microbeam Pb–U–Th geochronology. Geol Soc Am Abstr Prog 59:43
Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140
Bossi GE, Muruaga CM, Sanagua JG, Hernado A, Ahumada AL (1993) Geologia y estratigrafia de la cuenca Neogena Santa Maria-Hualfin (Deptos. Santa Maria y Belen, Provincia de Catamarca: XII Congreso Geol. Argentino, v. Actas II, pp 156–165
Cathles LC (1981) Fluid flow and genesis of hydrothermal ore deposits. In: Skinner BJ (ed) Economic geology 75th anniversary volume. Society of Economic Geologists Publication, pp 424–457
Caelles JC, Clark AH, Farrar E, McBride SL, Quirt S (1971) Potassium–Argon ages of porphyry copper deposits and associated rocks in the Farallón Negro-Capillitas district. Catamarca, Argentina. Econ Geol 66:961–964
Cannell J, Cooke DR, Walshe JL, Stein H (2005) Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu–Mo deposit. Econ Geol 100:979–1003
Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using sensitive high mass-resolution ion microprobe. J Geophys Res 89(Suppl):B524–B525
Cornejo P, Tosdal RM, Mpodozis C, Tomlinson AJ, Rivera O, Fanning CM (1997) El Salvador, Chile porphyry Copper deposit revisited: geologic and geochronologic framework. Int Geol Rev 39:22–54
Coughlin TJ, O’Sullivan PB, Kohn BP, Holcombe RJ (1998) Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina; implications for the mechanism of plateau uplift in the Andes. Geology 26:999–1002
Cumming GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing earth. Earth Planet Sci Lett 28:155–171
Dalrymple GB, Grove M, Lovera OM, Harrison TM, Hulen JB, Lanphere MA (1999) Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: a40Ar/39Ar and U-Pb study. Earth and Planetary Science Letters v. 173 p. 285–298
Deckart K, Clark AH, Aguilar AC, Vargas RR, Bertens NA, Mortensen JK, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile; implications of an integrated U–Pb and 40Ar/39Ar database. Econ Geol 100:905–934
Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposits, Nevada—a 6-km vertical reconstruction. Econ Geol 87:1963–2001
Dilles JH, Wright JE (1988) The chronology of Early Mesozoic Arc Magmatism in the Yerington district of western Nevada and its regional implication. Geological Society of America Bulletin v. 100 p. 644–652
Dilles JH, Einaudi MT, Gustafson LB (2000) Porphyry Cu–Mo–Au deposits; key research questions. Geol Soc Am Abstr Prog 32:2
Dunlap WJ, Kronenburg A (2001) Argon loss during deformation of micas: constraints from experimental deformation studies. Contrib Mineral Petrol 141:74–181
Elder JW (1977) Model of hydrothermal ore genesis: Volcanic Studies Group of the Geological Society of London, January 21–22, 1976, Proceedings, pp 4–13
Farley KA (2002) (U–Th)/He dating; techniques, calibrations, and applications. Rev Mineral Geochem 47:819–843
Farley KA, Wolf RA, Silver LT (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Acta 60:4223–4229
Foster DA, Harrison MT, Copeland P, Heizler TM (1990) Effects of excess argon within large diffusion domains on K-feldspar age spectra. Geochim Cosmochim Acta 54:1699–1708
González Bonorino F (1950) Geologia y petrografia de las hojas 12d (Capillitas) y 13d (Andalgalá): Buenos Aires Direccion Nacional de Geologia y Mineria, Boletin, 100 p
Gustafson LB, Orquera W, McWilliams M, Castro M, Olivares O, Rojas G, Maluenda J, Mendez M (2001) Multiple centers of mineralization in the Indio Muerto District, El Salvador, Chile. Econ Geol 96:325–350
Halter WE, Bain N, Becker K, Heinrich CA, Landtwing M, VonQuadt A, Clark AH, Sasso AM, Bissig T, Tosdal RM (2004) From andesitic volcanism to the formation of a porphyry Cu–Au mineralizing magma chamber: the Farallon Negro Volcanic Complex, northwestern Argentina. J Volcanol Geotherm Res 136:1–30
Harris AC, Allen CA, Bryan SE, Campbell IH, Holcombe RJ, Palin MJ (2004a) Measuring the longevity of regional volcanism hosting the Bajo de la Alumbrera Cu–Au deposit: implications for the genesis of porphyry ore deposits. Miner Depos 39:46–67
Harris AC, Kamenetsky VS, White NC, Steele DA (2004b) Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu–Au deposit, NW Argentina. Resour Geol 54:341–356
Harris AC, Golding SD, White NC (2005) The genesis of Bajo de la Alumbrera deposit: stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ Geol 101:71–94
Harris AC, Bryan SE, Holcombe RJ (2006) Volcanic setting of the Bajo de la Alumbrera porphyry Cu-Au deposit, Farallon Negro Volcanics, Northwest Argentina. Economic Geology v. 101, p. 71–94
Harrison TM, Duncan I, McDougall I (1985) Diffusion of 40Ar in biotite; temperature, pressure and compositional effects. Geochim Cosmochim Acta 49:2461–2468
Hattori KH, Keith JD (2001) Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA Mineralium Deposita v. 36 p. 799–806
Hedenquist JW, Richards JP (1998) The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. In: Richards JP, Larson PB (eds) Techniques in hydrothermal ore deposits geology. Rev Econ Geol 10:235–256
Henry CD, Elson HB, Castor SB (1995) Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Geol Soc Am Abstr Prog 27:A329
Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500
Horn I, Rudnick RL, McDonough WE (2000) Precise elemental and istope ratio determination by simulataneous solution nebulatization and laser ablation ICP-MS: application to U–Pb geochronology. Chem Geol 164:281–301
Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation-dependant alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365
Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rocky Mountain foreland deformation. Am J Sci 286:737–764
Jordan TE, Zeitler P, Ramos V, Gleadow AJW (1989) Thermochronometruc data on the development of the basement peneplain in the Sierras Pampeanas, Argentina. J South Am Earth Sci 2:207–222
Kraemer B, Adelmann D, Alten M, Schnurr W, Erpenstein K, Kiefer E, van den Bogarrd P, Goerler K (1999) Incorporation of the Paleogene foreland into the Neogene Puna Plateau; the Salar de Antofalla area, NW Argentina. J South Am Earth Sci 12:157–182
Landtwing MR, Dillenbeck ED, Leake MH, Heinrich CA (2002) Evolution of the breccia-hosted porphyry Cu–Mo–Au deposit at Agua Rica, Argentina: progressive unroofing of a magmatic hydrothermal system. Econ Geol 97:1273–1292
Lanphere MA, Baadsgaard H (2001) Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chem Geol 175:653–671
Lee JKW, Williams IS, Eillis DJ (1997) Pb. U. Th diffusion in natural zircon. Nature 390:159–162
Llambías EJ (1972) Estructura del grupo volcanico Farallón Negro, Catamarca, República Argentina. Rev Asoc Geol Argent 27:161–169
Lovera OM (1992) Computer programs to model 40Ar/39Ar diffusion data from multidomain samples. Comput Geosci 18:789–813
Lovera OM, Richter FM, Harrison TM (1989) The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. J Geophys Res B Solid Earth Planets 94:17917–17935
Maksaev V, Munizaga F, McWilliams M, Fanning M, Mathur R, Ruiz J, Zentilli M (2004) New chronology for El Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission-track dating: implications for the evolution of a supergiant porphyry Cu–Mo deposit. Soc Econ Geol Spec Publ 11:15–54
Marsh TM, Einaudi MT, McWilliams M (1997) 40Ar/39Ar geochronology of Cu–Au and Au–Ag mineralization in the Potrerillos district, Chile. Econ Geol 92:784–806
Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2004) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu–Mo porphyry and Cu–Ag–Au epithermal veins, Collahuasi District, northern Chile. Econ Geol 100:835–862
Norton DL (1982) Fluid and heat transport phenomena typical of copper-bearing pluton environments; southeastern Arizona. In: Titley SR (ed) Advances in geology of porphyry copper deposits; southwestern North America. University of Arizona Press, Tucson, pp 59–73
Norton D, Cathles LM (1979) Thermal aspects of ore deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 611–631
Padilla-Garza RA, Titley SR, Eastoe CJ (2004) Hypogene evolution of the Escondida porphyry copper deposit, Chile. Soc Econ Geol Spec Publ 11:141–165
Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A complication of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144
Perelló J, Rojas N, Devaux C, Fava L, Etchart E, Harman P (1998) Discovery of the Agua Rica porphyry Cu–Mo–Au deposit, Catamarca province, northwestern Argentina. Part II. Geology. Australian Mineral Foundation Symposium Proceedings, pp 117–132
Proffett JM (1997) Geology of the Bajo de la Alumbrera porphyry Cu–Au deposits, Catamarca Province, Argentina. Minera Alumbrera Ltd., Internal Report
Proffett JM (2003) Geology of the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina. Econ Geol 98:1535–1574
Ramos VA (1970) Estratigrafa y estructura del terciario en la Sierra de los Colorados (provincia de La Rioja), Republica Argentina. Rev Asoc Geol Argent 25:359–382
Ramos VA, Reynolds JH, Jordan TE, Tabbutt KD (1998) Time constraints for the uplift of the Sierras de Toro Negro, Umango, and Espinal, western Sierras Pampeanas, Argentina. Geol Soc Am Abstr Prog 20:61
Re GH (1995) Evolucion tectosedimentarua del depocentro de la cuenca del antepais andino (27°S–33°S) y su relacion con el cambio en el angulo de subduccion de la placa de Nazca: IX Congreso Latinoamericano de Geologia, Resumenes, Caracas, Venezuela, 1995, p 72
Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152
Reynolds P, Ravenhurst C, Zentilli M, Lindsay D (1998) High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile. Chem Geol 148:45–60
Reiners PW, Ehlers TA, Garver JI, Mitchell SG, Montgomery DR, Vance JA, Nicolescu S (2002) Late Miocene exhumation and uplift of the Washington Cascade Range. Geology 30:767–770
Reiners PW, Zhou Z, Ehlers TA, Xu C, Brandon MT, Donelick RA, Nicolescu S (2003) Post-orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission-track dating. Am J Sci 303:489–518
Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887
Rojas, N, Perelló, J, Harman, P, Cabello, J, Devaux, C, Fava, L, Etchart, E (1998) Discovery of the Agua Rica porphyry Cu-Mo-Au deposit, Catamarca province, northwestern Argentina, Part I: Exploration and discovery: Australian Mineral Foundation Symposium, Perth, Western Australia, 30 November and 1 December 1998, Proceedings, p. 111–117.
Sasso AM (1997) Geological evolution and metallogenetic relationships of the Farallón Negro volcanic complex, NW Argentina: Ph.D. thesis, Queens University, 842 p
Sasso AM, Clark AH (1998) The Farallón Negro group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu–Au metallogeny in the Andean back-arc. Soc Econ Geol Newsl 34:1, 8–18
Silberman ML, Bonham HF Jr, Garside LJ, Ashley RP (1979) Timing of hydrothermal alteration–mineralization and igneous activity in the Tonopah mining district and vicinity, Nye and Esmeralda Counties, Nevada. Nevada Bureau Mines Geol Rep 33:119–126
Sister RG (1963) Informe geológico–económico de Farallón Negro y zona adyacente, Distrito Haulfin, Departamento Belen, Provincia de Catamarca, Opera Lilloana, VIII, 164 p
Spell TL, McDougall I (2003) Characterization and calibration of 40Ar/39Ar dating standards. Chem Geol 198:189–211
Tosdal RM, Richards JP (2001) Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits. Rev Econ Geol 14:157–181
Ulrich T, Heinrich CA (2002) Geology and alteration geochemistry of the porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina. Econ Geol 96:1719–1742
Ulrich T, Günthur D, Heinrich CA (2002) The evolution of a porphyry Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–1774
Vandervoort DS, Jordan TE, Zeitler PK, Alonso RN (1995) Chronology of internal drainage development and uplift, southern Puna Plateau, Argentine Central Andes. Geology 23:145–148
Villeneuve M, Sandeman HA, Davis WJ (2000) A method for intercalibration of U–Th–Pb and 40Ar–39Ar ages in the Phanerozoic. Geochim Cosmochim Acta 64:4017–4030