Multilinear pseudo-differential operators on product of Local Hardy spaces with variable exponents
Tóm tắt
In this paper, we establish a new atomic decomposition theory for Local Hardy spaces with variable exponents via local grand maximal characterization. By applying the refined atomic decomposition result, we prove that multilinear pseudo-differential operators are bounded on product of local Hardy spaces with variable exponents.
Tài liệu tham khảo
Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseduodifferential operators. Comm. Par. Diff. Eq. 28, 1161–1181 (2003)
Coifman, R.: A real variable characterization of \(H^p\). Studia Math. 51, 269–274 (1974)
Coifman, R., Meyer, Y.: Wavelets, Calderón-Zygmund and multilinear operators. Cambridge University Press, Cambridge (1992)
Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)
Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkhäuser, Basel (2013)
Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)
Cruz-Uribe, D., Wang, L.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014)
Diening, L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129(8), 657–700 (2005)
Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)
Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46(1), 27–42 (1979)
Grafakos, L., He, D.: Multilinear Caldern–Zygmund operators on Hardy spaces, II. J. Math. Anal. Appl. 416(2), 511–521 (2014)
Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math. 52(2), 169–179 (2001)
Grafakos, L., Nakamura, S., Nguyen, H., Sawano, Y.: Conditions for boundedness into Hardy spaces. arXiv:1702.02229v1
Grafakos, L., Torres, R.: Multilinear Caldrón–Zygmund theory. Adv. Math. 165, 124–164 (2002)
Han, Y., Lee, M., Lin, C.: Atomic decomposition and boundedness of operators on weighted Hardy spaces. Can. Math. Bull. 55(2), 303–314 (2012)
Ho, K.: Atomic decomposition of Hardy–Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn. Math. 40, 31–62 (2015)
Hu, G., Meng, Y.: Multilinear Caldern–Zygmund operator on products of Hardy spaces. Acta Math. Sin. (Engl. Ser.) 28(2), 281–294 (2012)
Huang, J., Liu, Y.: The boundedness of multilinear Caldern–Zygmund operators on Hardy spaces. Proc. Indian Acad. Sci. Math. Sci. 123(3), 383–392 (2013)
Hörmander, L.: Pseudodifferential operators and hypoelliptic equations. Proc. Symp. Pure Math. 10, 138–183 (1967)
Koezuka, K., Tomita, N.: Bilinear pseudo-differential operators with symbols in \(BS^m_{1,1}\) on Triebel–Lizorkin spaces. J. Fourier Anal. Appl. 24, 309–319 (2018)
Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41, 592–618 (1991)
Latter, R.: A characterization of \(H^p({\mathbb{R}}^n)\) in terms of atoms. Stud. Math. 62(1), 93–101 (1978)
Li, W., Xue, Q., Yabuta, K.: Maximal operator for multilinear Calderón–Zygmund Singular integral operators on weighted Hardy spaces. J. Math. Anal. Appl. 373, 384–392 (2011)
Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992)
Maldonado, D., Naibo, V.: Weighted norm inequalities for paraproducts and bilinear pseudo-differential operators with mild regularity. J. Fourier Anal. Appl. 15, 218–261 (2009)
Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)
Nakai, E., Sawano, Y.: Orlicz-Hardy spaces and their duals. Sci. China Math. 57, 903–962 (2014)
Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo (1950)
Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–211 (1931)
Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128, 163–185 (1995)
Pick, L., Růžičkap, M.: An example of a space \(L^{p(x)}\) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19, 369–371 (2001)
Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integr. Equat. Oper. Theory 77, 123–148 (2013)
Tan, J., Liu, Z., Zhao, J.: On multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11(3), 715–734 (2017)
Xiao, J., Jiang, Y., Gao, W.: Bilinear pseudo–differential operators on Local Hardy spaces. Acta Math. Sin. 28, 255–266 (2012)
Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math. (Rozprawy Mat.) 520, 74 (2016)