Multilinear pseudo-differential operators on product of Local Hardy spaces with variable exponents

Jian Tan1, Jiman Zhao2
1School of Science, Nanjing University of Posts and Telecommunications, Nanjing, People’s Republic of China
2School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing, People’s Republic of China

Tóm tắt

In this paper, we establish a new atomic decomposition theory for Local Hardy spaces with variable exponents via local grand maximal characterization. By applying the refined atomic decomposition result, we prove that multilinear pseudo-differential operators are bounded on product of local Hardy spaces with variable exponents.

Tài liệu tham khảo

Bényi, Á., Torres, R.H.: Symbolic calculus and the transposes of bilinear pseduodifferential operators. Comm. Par. Diff. Eq. 28, 1161–1181 (2003) Coifman, R.: A real variable characterization of \(H^p\). Studia Math. 51, 269–274 (1974) Coifman, R., Meyer, Y.: Wavelets, Calderón-Zygmund and multilinear operators. Cambridge University Press, Cambridge (1992) Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977) Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkhäuser, Basel (2013) Cruz-Uribe, D., Fiorenza, A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \(L^p\) spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006) Cruz-Uribe, D., Wang, L.: Variable Hardy spaces. Indiana Univ. Math. J. 63, 447–493 (2014) Diening, L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129(8), 657–700 (2005) Fefferman, C., Stein, E.: \(H^p\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972) Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46(1), 27–42 (1979) Grafakos, L., He, D.: Multilinear Caldern–Zygmund operators on Hardy spaces, II. J. Math. Anal. Appl. 416(2), 511–521 (2014) Grafakos, L., Kalton, N.: Multilinear Calderón–Zygmund operators on Hardy spaces. Collect. Math. 52(2), 169–179 (2001) Grafakos, L., Nakamura, S., Nguyen, H., Sawano, Y.: Conditions for boundedness into Hardy spaces. arXiv:1702.02229v1 Grafakos, L., Torres, R.: Multilinear Caldrón–Zygmund theory. Adv. Math. 165, 124–164 (2002) Han, Y., Lee, M., Lin, C.: Atomic decomposition and boundedness of operators on weighted Hardy spaces. Can. Math. Bull. 55(2), 303–314 (2012) Ho, K.: Atomic decomposition of Hardy–Morrey spaces with variable exponents. Ann. Acad. Sci. Fenn. Math. 40, 31–62 (2015) Hu, G., Meng, Y.: Multilinear Caldern–Zygmund operator on products of Hardy spaces. Acta Math. Sin. (Engl. Ser.) 28(2), 281–294 (2012) Huang, J., Liu, Y.: The boundedness of multilinear Caldern–Zygmund operators on Hardy spaces. Proc. Indian Acad. Sci. Math. Sci. 123(3), 383–392 (2013) Hörmander, L.: Pseudodifferential operators and hypoelliptic equations. Proc. Symp. Pure Math. 10, 138–183 (1967) Koezuka, K., Tomita, N.: Bilinear pseudo-differential operators with symbols in \(BS^m_{1,1}\) on Triebel–Lizorkin spaces. J. Fourier Anal. Appl. 24, 309–319 (2018) Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41, 592–618 (1991) Latter, R.: A characterization of \(H^p({\mathbb{R}}^n)\) in terms of atoms. Stud. Math. 62(1), 93–101 (1978) Li, W., Xue, Q., Yabuta, K.: Maximal operator for multilinear Calderón–Zygmund Singular integral operators on weighted Hardy spaces. J. Math. Anal. Appl. 373, 384–392 (2011) Meyer, Y.: Wavelets and Operators. Cambridge University Press, Cambridge (1992) Maldonado, D., Naibo, V.: Weighted norm inequalities for paraproducts and bilinear pseudo-differential operators with mild regularity. J. Fourier Anal. Appl. 15, 218–261 (2009) Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012) Nakai, E., Sawano, Y.: Orlicz-Hardy spaces and their duals. Sci. China Math. 57, 903–962 (2014) Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo (1950) Orlicz, W.: Über konjugierte Exponentenfolgen. Stud. Math. 3, 200–211 (1931) Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128, 163–185 (1995) Pick, L., Růžičkap, M.: An example of a space \(L^{p(x)}\) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math. 19, 369–371 (2001) Sawano, Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integr. Equat. Oper. Theory 77, 123–148 (2013) Tan, J., Liu, Z., Zhao, J.: On multilinear commutators in variable Lebesgue spaces. J. Math. Inequal. 11(3), 715–734 (2017) Xiao, J., Jiang, Y., Gao, W.: Bilinear pseudo–differential operators on Local Hardy spaces. Acta Math. Sin. 28, 255–266 (2012) Zhuo, C., Sawano, Y., Yang, D.: Hardy spaces with variable exponents on RD-spaces and applications. Dissertationes Math. (Rozprawy Mat.) 520, 74 (2016)