Multilinear Weighted Regression (MWE) with Neural Networks for trend prediction

Applied Soft Computing - Tập 82 - Trang 105555 - 2019
Alberto Arteta Albert1, Luis Fernando de Mingo López2, Nuria Gómez Blas2
1Computer Science, Troy University, University Avenue, Troy Alabama 36081, USA
2Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid, Alan Turing sn, 28031 Madrid, Spain

Tài liệu tham khảo

Cook, 2000, Detection of influential observation in linear regression (reprint from 1977v19 p15-18), Technometrics, 42, 65, 10.1080/00401706.2000.10485981 Velleman, 1981, Efficient computing of regression diagnostics, Amer. Statist., 35, 234 X. Song, H. Lu, Multilinear regression for embedded feature selection with application to fMRI analysis, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4–9, 2017, San Francisco, California, USA, 2017, pp. 2562–2568. Hirsch, 1982, Techniques of trend analysis for monthly water quality data, Water Resour. Res., 18, 107, 10.1029/WR018i001p00107 Lutz, 2001, The end of world population growth, Nature, 412, 543, 10.1038/35087589 M. Shimosaka, T. Tsukiji, H. Wada, K. Tsubouchi, Predictive population behavior analysis from multiple contexts with multilinear poisson regression, in: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2018, Seattle, WA, USA, November 06–09, 2018, 2018, pp. 504–507, http://dx.doi.org/10.1145/3274895.3274964. Bammann, 2006, Statistical models: Theory and practice, Biometrics, 62, 940, 10.1111/j.1541-0420.2006.00588_4.x Speed, 2010, Statistical models: Theory and practice, revised edition by David A. Freedman, Internat. Statist. Rev., 78, 457, 10.1111/j.1751-5823.2010.00122_11.x Freedman, 2005 de Oliveira, 2014, Applying artificial neural networks to prediction of stock price and improvement of the directional prediction index - case study of petr4, petrobras, Brazil, Expert Syst. Appl., 40, 7596, 10.1016/j.eswa.2013.06.071 Sarlin, 2014, A weighted som for classifying data with instance-varying importance, Int. J. Mach. Learn. Cybern., 5, 101, 10.1007/s13042-013-0175-3 Zhang, 2014, Gold price forecasting based on RBF neural network and hybrid fuzzy clustering algorithm, Lect. Notes Electr. Eng., 241, 73, 10.1007/978-3-642-40078-0_6 Han, 2007, Using SVM with financial statement analysis for prediction of stocks, Commun. IIMA, 7, 63 Xiaoac, 2014, Ensemble ANNs-PSO-GA approach for day-ahead stock e-exchange prices forecasting, Int. J. Comput. Intell. Syst., 7, 272, 10.1080/18756891.2013.864472 Stroud, 1995, Methods of multivariate analysis. Alvin C. Rencher, Q. Rev. Biol., 70, 549, 10.1086/419262 Yan, 2009 Armstrong, 1984, Forecasting by extrapolation: Conclusions from twenty-five years of research, Interfaces, 14, 52, 10.1287/inte.14.6.52 Tetko, 1995, Neural network studies. 1. Comparison of overfitting and overtraining, J. Chem. Inf. Comput. Sci., 35, 826, 10.1021/ci00027a006 de Mingo López, 2017, Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations, Soft Comput., 22, 2567 Ghaziri, 2003, A neural network algorithm for the traveling salesman problem with backhauls, Comput. Ind. Eng., 44, 267, 10.1016/S0360-8352(02)00179-1 Albert, 2016, Natural combination to trade in the stock market, Soft Comput., 20, 2433, 10.1007/s00500-015-1652-2 Zambrano-Bigiarini, 2013, A model-independent particle swarm optimisation software for model calibration, Environ. Model. Softw., 43, 5, 10.1016/j.envsoft.2013.01.004 Abdelaziz, 2014, Particle swarm optimization for inverse modeling of solute transport in fractured gneiss aquifer, J. Contam. Hydrol., 164, 285, 10.1016/j.jconhyd.2014.06.003 O’Neill, 2006, Grammatical swarm: The generation of programs by social programming, Nat. Comput., 5, 443, 10.1007/s11047-006-9007-7 van Griensven, 2006, A global sensitivity analysis tool for the parameters of multi-variable catchment models, J. Hydrol., 324, 10, 10.1016/j.jhydrol.2005.09.008 McKay, 1979, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21, 239 Iman, 2008, Latin hypercube sampling, 408 M. Zambrano-Bigiarini, M. Clerc, R. Rojas-Mujica, Standard particle swarm optimisation 2011 at CEC-2013: A baseline for future PSO improvements, in: 2013 IEEE Congress on Evolutionary Computation, 2013, pp. 2337–2344. Sengupta, 2018, Particle swarm optimization: A survey of historical and recent developments with hybridization perspectives, CoRR, abs/1804.05319 Trunk, 1979, A problem of dimensionality: A simple example, IEEE Trans. Pattern Anal. Mach. Intell., 1, 306, 10.1109/TPAMI.1979.4766926 Muhlbauer, 2009, Application and comparison of robust linear regression methods for trend estimation, J. Appl. Meteorol. Climatol., 48, 1961, 10.1175/2009JAMC1851.1