Multilevel mediation analysis in R: A comparison of bootstrap and Bayesian approaches
Springer Science and Business Media LLC - Trang 1-15 - 2023
Tóm tắt
Mediation analysis in repeated measures studies can shed light on the mechanisms through which experimental manipulations change the outcome variable. However, the literature on interval estimation for the indirect effect in the 1-1-1 single mediator model is sparse. Most simulation studies to date evaluating mediation analysis in multilevel data considered scenarios that do not match the expected numbers of level 1 and level 2 units typically encountered in experimental studies, and no study to date has compared resampling and Bayesian methods for constructing intervals for the indirect effect in this context. We conducted a simulation study to compare statistical properties of interval estimates of the indirect effect obtained using four bootstrap and two Bayesian methods in the 1-1-1 mediation model with and without random effects. Bayesian credibility intervals had coverage closest to the nominal value and no instances of excessive Type I error rates, but lower power than resampling methods. Findings indicated that the pattern of performance for resampling methods often depended on the presence of random effects. We provide suggestions for selecting an interval estimator for the indirect effect depending on the most important statistical property for a given study, as well as code in R for implementing all methods evaluated in the simulation study. Findings and code from this project will hopefully support the use of mediation analysis in experimental research with repeated measures.
Tài liệu tham khảo
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. https://doi.org/10.1016/j.jml.2012.11.001
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11(2), 142–163. https://doi.org/10.1037/1082-989X.11.2.142
Biesanz, J. C., Falk, C. F., & Savalei, V. (2010). Assessing mediational models: Testing and interval estimation for indirect effects. Multivariate Behavioral Research, 45(4), 661–701. https://doi.org/10.1080/00273171.2010.498292
Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical Psychology, 31(2), 144–152. https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 1–20. https://doi.org/10.5334/joc.10
Buhle, J., & Wager, T. D. (2010). Performance-dependent inhibition of pain by an executive working memory task. PAIN®, 149(1), 19–26. https://doi.org/10.1016/j.pain.2009.10.027
Bürkner, P. C. (2017). Brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80, 1–28. https://doi.org/10.18637/jss.v080.i01
Cain, M. K., Zhang, Z., & Bergeman, C. S. (2018). Time and other considerations in mediation design. Educational and Psychological Measurement, 78(6), 952–972. https://doi.org/10.1177/0013164417743003
Carpenter, J. R., Goldstein, H., & Rasbash, J. (2003). A novel bootstrap procedure for assessing the relationship between class size and achievement. Applied Statistics, 52(4), 431–443.
Chib, S., & Greenberg, E. (1995). Understanding the Metropolis–Hastings algorithm. The American Statistician, 49(4), 327–335. https://doi.org/10.1080/00031305.1995.10476177
Chu, Y. (2013). Bayesian mediation analysis for partially clustered designs[Unpublished Master’s thesis]. The University of Texas at Austin.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. https://doi.org/10.1037/0033-2909.112.1.155
Dohle, S., & Siegrist, M. (2014). Fluency of pharmaceutical drug names predicts perceived hazardousness, assumed side effects and willingness to buy. Journal of Health Psychology, 19(10), 1241–1249. https://doi.org/10.1177/1359105313488974
Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall.
Falk, C. F. (2018). Are robust standard errors the best approach for interval estimation with nonnormal data in structural equation modeling? Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 244–266. https://doi.org/10.1080/10705511.2017.1367254
Fang, J., Wen, Z., & Hau, K.-T. (2019). Mediation effects in 2-1-1 multilevel model: Evaluation of alternative estimation methods. Structural Equation Modeling: A Multidisciplinary Journal, 26(4). https://doi.org/10.1080/10705511.2018.1547967
Fenerci, C., & Sheldon, S. (2022). The role of episodic memory in imagining autobiographical events: The influence of event expectancy and context familiarity. Memory, 30(5), 573–590. https://doi.org/10.1080/09658211.2022.2032178
Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47(1), 61–87. https://doi.org/10.1080/00273171.2012.640596
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC Press.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel / hierarchical models. Cambridge University Press.
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.
Goldstein, H. (2011). Bootstrapping in multilevel models. In J. J. Hox & J. K. Roberts (Eds.), Handbook of advanced multilevel analysis (pp. 163–171). Routledge.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97
Hoffman, M. D., & Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–1623.
Hox, J., & van de Schoot, R. (2013). Robust methods for multilevel analysis. In M. A. Scott, J. S. Simonoff, & B. D. Marx (Eds.), The SAGE handbook of multilevel modeling (pp. 387–402). SAGE Publications Ltd.. https://doi.org/10.4135/9781446247600.n22
Jackman, S. (2009). Bayesian analysis for the social sciences. John Wiley & Sons.
Kackar, R. N., & Harville, D. A. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79(388), 853–862.
Kelcey, B., Dong, N., Spybrook, J., & Cox, K. (2017). Statistical power for causally defined indirect effects in group-randomized trials with individual-level mediators. Journal of Educational and Behavioral Statistics, 42(5), 499–530. https://doi.org/10.3102/1076998617695506
Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower-level mediation in multilevel models. Psychological Methods, 8(2), 115–128. https://doi.org/10.1037/1082-989X.8.2.115
Krull, J. L., & MacKinnon, D. P. (2001). Multilevel modeling of individual and group level mediated effects. Multivariate Behavioral Research, 36(2), 249–277. https://doi.org/10.1207/S15327906MBR3602_06
Lachowicz, M. J., Sterba, S. K., & Preacher, K. J. (2015). Investigating multilevel mediation with fully or partially nested data. Group Processes & Intergroup Relations, 18(3), 274–289. https://doi.org/10.1177/1368430214550343
Lai, M. (2020). Bootmlm: Bootstrap resampling for multilevel models. R package version 0.0.1.1000. https://github.com/marklhc/bootmlm
Lai, M. (2021). Bootstrap confidence intervals for multilevel standardized effect size. Multivariate Behavioral Research, 56(4), 558–578. https://doi.org/10.1080/00273171.2020.1746902
Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001. https://doi.org/10.1016/j.jmva.2009.04.008
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104. https://doi.org/10.1037/1082-989X.7.1.83
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99–128.
MacKinnon, D. P., & Pirlott, A. G. (2015). Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis. Personality and Social Psychology Review, 19(1), 30–43. https://doi.org/10.1177/1088868314542878
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing type I error and power in linear mixed models. Journal of Memory and Language, 94, 305–315. https://doi.org/10.1016/j.jml.2017.01.001
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.
Miočević, M., MacKinnon, D. P., & Levy, R. (2017). Power in Bayesian mediation analysis for small sample research. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 666–683. https://doi.org/10.1080/10705511.2017.1312407
Neal, R. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. L. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain Monte Carlo (pp. 116–162). Chapman and Hall/CRC.
Page-Gould, E., & Sharples, A. (2016). Bootstrapping accurate indirect effects in multilevel models. Retrieved from http://www.page-gould.com/r/indirectmlm/.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2021). Nlme: Linear and nonlinear mixed effects models. R package version, 3, 1–152 https://CRAN.R-project.org/package=nlme
Pituch, K. A., & Stapleton, L. M. (2008). The performance of methods to test upper-level mediation in the presence of nonnormal data. Multivariate Behavioral Research, 43(2). https://doi.org/10.1080/00273170802034844
Pituch, K. A., Stapleton, L. M., & Kang, J. Y. (2006). A comparison of single sample and bootstrap methods to assess mediation in cluster randomized trials. Multivariate Behavioral Research, 41(3), 367–400. https://doi.org/10.1207/s15327906mbr4103_5
Pituch, K. A., Whittaker, T. A., & Stapleton, L. M. (2005). A comparison of methods to test for mediation in multisite experiments. Multivariate Behavioral Research, 40(1), 1–23. https://doi.org/10.1207/s15327906mbr4001_1
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879–891. https://doi.org/10.3758/BRM.40.3.879
Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2011). Alternative methods for assessing mediation in multilevel data: The advantages of multilevel SEM. Structural Equation Modeling: A Multidisciplinary Journal, 18(2), 161–182. https://doi.org/10.1080/10705511.2011.557329
Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15(3), 209–233. https://doi.org/10.1037/a0020141
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. SAGE.
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/
Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An integrative framework for defining R-squared measures. Psychological Methods, 24(3), 309–338. https://doi.org/10.1037/met0000184
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
Sherman, M., & le Cessie, S. (1997). A comparison between bootstrap methods and generalized estimating equations for correlated outcomes in generalized linear models. Communications in Statistics – Simulation and Computation, 26(3), 901–925. https://doi.org/10.1080/03610919708813417
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422–445. https://doi.org/10.1037/1082-989X.7.4.422
Snijders, T. A. B., & Bosker, R. J. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling. SAGE.
Stan Development Team. (2020a). Stan modeling language users guide and reference manual, Version 2.21.0.
Stan Development Team. (2020b). RStan: The R interface to Stan. R Package Version, 2(21), 2. http://mc-stan.org/
Tabry, V., Vogel, T. A., Lussier, M., Brouillard, P., Buhle, J., Rainville, P., Bherer, L., & Roy, M. (2020). Inter-individual predictors of pain inhibition during performance of a competing cognitive task. Scientific Reports, 10, 21785. https://doi.org/10.1038/s41598-020-78653-z
Vallejo, G., Tuero-Herrero, E., Nunez, J. C., & Rosario, P. (2014). Performance evaluation of recent information criteria for selecting multilevel models in behavioral and social sciences. International Journal of Clinical and Health Psychology, 14(1), 48–57. https://doi.org/10.1016/S1697-2600(14)70036-5
Vallejo Seco, G., Ato García, M., Fernández García, P. M., & Livacic Rojas, P. E. (2013). Multilevel bootstrap analysis with assumptions violated. Psicothema, 25(4), 520–528.
van der Leeden, R., Meijer, E., & Busing, F. M. T. A. (2008). Resampling multilevel models. In J. de Leeuw & E. Meijer (Eds.), Handbook of multilevel analysis (pp. 401–433). Springer.
van de Schoot, R., & Depaoli, S. (2014). Bayesian analyses: Where to start and what to report. The European Health Psychologist, 16(2), 75–84.
van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & Aken, M. A. (2014). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85, 842–860. https://doi.org/10.1111/cdev.12169
Wang, L., & Preacher, K. J. (2015). Moderated mediation analysis using Bayesian methods. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 249–263. https://doi.org/10.1080/10705511.2014.935256
Wu, W., Carroll, I. A., & Chen, P.-Y. (2018). A single-level random-effects cross-lagged panel model for longitudinal mediation analysis. Behavior Research Methods, 50, 2111–2124. https://doi.org/10.3758/s13428-017-0979-2
Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14(4), 301–322. https://doi.org/10.1037/a0016972
Zhang, Q., Wang, L., & Bergeman, C. S. (2018). Multilevel autoregressive mediation models: Specification, estimation, and applications. Psychological Methods, 23(2), 278–297. https://doi.org/10.1037/met0000161
Zhang, Z., Zyphur, M. J., & Preacher, K. J. (2009). Testing multilevel mediation using hierarchical linear models: Problems and solutions. Organizational Research Methods, 12(4), 695–719. https://doi.org/10.1177/1094428108327450