Multilevel functional principal component analysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
James, G. M., Hastie, T. J. and Sugar, C. A. (2000). Principal component models for sparse functional data. <i>Biometrika</i> <b>87</b> 587–602.
Fan, J. and Gijbels, I. (1996). <i>Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability</i> <b>66</b>. Chapman & Hall, London.
Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. <i>Ann. Statist.</i> <b>24</b> 1–24.
Besse, P. and Ramsay, J. O. (1986). Principal components analysis of sampled functions. <i>Psychometrika</i> <b>51</b> 285–311.
Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). <i>Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics</i> <b>12</b>. Cambridge Univ. Press, Cambridge.
Yao, F., Müller, H.-G., Clifford, A. J., Dueker, S. R., Follett, J., Lin, Y., Buchholz, B. A. and Vogel, J. S. (2003). Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate. <i>Biometrics</i> <b>59</b> 676–685.
Baladandayuthapani, V., Mallick, B. K., Hong, M. Y., Lupton, J. R., Turner, N. D. and Carroll, R. J. (2008). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. <i>Biometrics</i> <b>64</b> 64–73.
Bigelow, J. L. and Dunson, D. B. (2007). Bayesian adaptive regression splines for hierarchical data. <i>Biometrics</i> <b>63</b> 724–732.
Borbely, A. A. and Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. <i>J. Biological Rhythms</i> <b>14</b> 557.
Brumback, B. A. and Rice, J. A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves. <i>J. Amer. Statist. Assoc.</i> <b>93</b> 961–976.
Carrier, J., Land, S., Buysse, D. J., Kupfer, D. J. and Monk, T. H. (2001). The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). <i>Psychophysiology</i> <b>38</b> 232–242.
Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. <i>J. R. Stat. Soc. Ser. B Statist. Methodol.</i> <b>68</b> 109–126.
Hall, P., Müller, H.-G. and Yao, F. (2008). Modeling sparse generalized longitudinal observations with latent Gaussian processes. <i>J. R. Stat. Soc. Ser. B Statist. Methodol.</i> <b>70</b> 703–723.
Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. <i>Biometrics</i> <b>38</b> 963–974.
Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for clustered data when the predictor is measured without/with error. <i>J. Amer. Statist. Assoc.</i> <b>95</b> 520–534.
Loève, M. (1945). Fonctions aléatoires de second ordre. <i>C. R. Acad. Sci.</i> <b>220</b> 469.
Massimini, M., Ferrarelli, F., Esser, S. K., Riedner, B. A., Huber, R., Murphy, M., Peterson, M. J. and Tononi, G. (2007). Triggering sleep slow waves by transcranial magnetic stimulation. <i>Proc. Natl. Acad. Sci.</i> <b>104</b> 84–96.
Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A. and Coombes, K. R. (2008). Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. <i>Biometrics</i> <b>64</b> 479–489.
Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. <i>J. Roy. Statist. Soc. Ser. B</i> <b>68</b> 179–199.
Morris, J. S., Vannucci, M., Brown, P. J. and Carroll, R. J. (2003). Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis. <i>J. Amer. Statist. Assoc.</i> <b>98</b> 573–584.
Müller, H.-G. (2005). Functional modelling and classification of longitudinal data. <i>Scand. J. Statist.</i> <b>32</b> 223–240.
Quan, S. F., Howard, B. V., Iber, C., Kiley, J. P., Nieto, F. J., O’Connor, G. T., Rapoport, D. M., Redline, S., Robbins, J., Samet, J. M. and Wahl, P. W. (1997). The sleep heart health study: Design, rationale, and methods. <i>Sleep</i> <b>20</b> 1077–1085.
Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis. <i>J. R. Stat. Soc. Ser. B Statist. Methodol.</i> <b>53</b> 539–572.
Raudenbush, S. W. and Bryk, A. S (2002). <i>Hierarchical Linear Models</i>: <i>Applications and Data Analysis Methods</i>, 2nd ed. <i>Advanced Quantitative Techniques in the Social Sciences Series</i> <b>1</b>. Sage, Thousand Oaks, CA.
Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. <i>J. R. Stat. Soc. Ser. B Statist. Methodol.</i> <b>53</b> 233–243.
Shahar, E., Whitney, C. W., Redline, S., Lee, E. T., Newman, A. B., Javier Nieto, F., O’connor, G. T., Boland, L. L., Schwartz, J. E. and Samet, J. M. (2001). Sleep-disordered breathing and cardiovascular disease cross-sectional results of the Sleep Heart Health Study. <i>American J. Respiratory and Critical Care Medicine</i> <b>163</b> 19–25.
Sing, H. C., Kautz, M. A., Thorne, D. R., Hall, S. W., Redmond, D. P., Johnson, D. E., Warren, K., Bailey, J. and Russo, M. B. (2005). High-frequency EEG as measure of cognitive function capacity: A preliminary report. <i>Aviation</i>, <i>Space and Environmental Medicine</i> <b>76</b> C114–C135.
Staniswalis, J. G. and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data. <i>J. Amer. Statist. Assoc.</i> <b>93</b> 1403–1404.
Tassi, P., Bonnefond, A., Engasser, O., Hoeft, A., Eschenlauer, R. and Muzet, A. (2006). EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. <i>Physiological Behavior</i> <b>87</b> 177–184.
Van Cauter, E., Leproult, R. and Plat, L. (2000). Age-related changes in slow wave sleep and rem sleep and relationship with growth hormone and cortisol levels in healthy men. <i>J. Amer. Medical Assoc.</i> <b>284</b> 861–868.
Yao, F., Müller, H.-G. and Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. <i>J. Amer. Statist. Assoc.</i> <b>100</b> 577–591.
Zhang, L., Samet, J., Caffo, B. S. and Punjabi, N. M. (2006). Cigarette smoking and nocturnal sleep architecture. <i>American Journal of Epidemiology</i> <b>164</b> 529.
Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). <i>Measurement Error in Nonlinear Models</i>: <i>A Modern Perspective</i>, 2nd ed. Chapman and Hall/CRC Press, Boca Raton, FL.
Crainiceanu, C. M., Caffo, B. S., Di, C.-Z. and Naresh, P. M. (2009). Nonparametric signal extraction and measurement error in the analysis of electroencephalographic activity during sleep. <i>J. Amer. Statist. Assoc.</i> To appear.
Di, C.-Z., Crainiceanu, C. M., Caffo, B. S. and Punjabi, N. M. (2009). Supplment to “Multilevel functional principal component analysis.” DOI: 10.1214/08-AOAS206SUPP.
Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002). <i>The Analysis of Longitudinal Data</i>. Oxford Univ. Press.
Goldstein, H. (1995). <i>Multilevel Statistical Models</i>. A Hodder Arnold Publication, London.
Indritz, J. (1963). <i>Methods in Analysis</i>. Macmillan, New York.
Karhunen, K. (1947). <i>Über lineare Methoden in der Wahrscheinlichkeitsrechnung</i>. Suomalainen Tiedeakatemia.