Multigrid method for anisotropic diffusion equations based on adaptive Chebyshev smoothers

Mathematical Models and Computer Simulations - Tập 7 - Trang 117-127 - 2015
V. T. Zhukov1, N. D. Novikova1, O. B. Feodoritova1
1Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

We propose an efficient multigrid algorithm for solving anisotropic elliptic difference equations. The algorithm is based on using Chebyshev’s explicit iterations at smoothing stages and in solving coarse-grid equations. We have developed a procedure for adapting smoothers to anisotropy and present examples, which show that adaptation improves the efficiency of the multigrid method and scalability of the parallel code.

Tài liệu tham khảo

V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Parallel multigrid method for difference elliptic equations Part I. The main elements of the algorithm.” http://library.keldysh.ru/preprint.asp?id=2012-30. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Parallel multigrid method for difference elliptic equations. Anisotropic diffusion”. http://library.keldysh.ru/preprint.asp?id=2012-76. V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Parallel multigrid method for solving elliptic equations,” Math. Models Comput. Simul. 6(4), 425 (2014). R. P. Fedorenko, “Relaxation method for solving difference elliptical equations,” Zh. Vychisl. Mat. Mat. Fiz. 1(5), 922–927 (1961). V. T. Zhukov, “Explicit methods of mumerical integration for parabolic equations,” Math. Models Comput. Simul. 3(3), 311–333 (2011). A. A. Samarskii and E. S. Nikolaev, Methods for the Solution of Grid Equations (Nauka, Moscow, 1978) [in Russian]. U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid (Academic Press, London, 2001). Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier Yang, “Multigrid smoothers for ultraparallel computing,” SIAM J. Sci. Comput. 33(5), 2864–2887 (2011).