Multigrid Methods for Time-Fractional Evolution Equations: A Numerical Study

Communications on Applied Mathematics and Computation - Tập 2 Số 2 - Trang 163-177 - 2020
Bangti Jin1, Zhi Zhou2
1Department of Computer Science, University College London, London, UK
2Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bramble, J.H., Pasciak, J.E., Sammon, P.H., Thomée, V.: Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52(186), 339–367 (1989)

Bramble, J.H., Sammon, P.H.: Efficient higher order single step methods for parabolic problems. I. Math. Comput. 35(151), 655–677 (1980)

Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

Douglas Jr., J., Dupont, T., Ewing, R.E.: Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem. SIAM J. Numer. Anal. 16(3), 503–522 (1979)

Du, Q., Ming, P.: Cascadic multigrid methods for parabolic problems. Sci. China Ser. A 51(8), 1415–1439 (2008)

Gaspar, F.J., Rodrigo, C.: Multigrid waveform relaxation for the time-fractional heat equation. SIAM J. Sci. Comput. 39(4), A1201–A1224 (2017)

Hackbusch, W.: Multigrid Methods and Applications. Springer, Berlin (1985)

Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, second edn. Springer, Berlin (1996). (stiff and differential-algebraic problems)

Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

Jin, B., Li, B., Zhou, Z.: Discrete maximal regularity of time-stepping schemes for fractional evolution equations. Numer. Math. 138(1), 101–131 (2018)

Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comput. 88(319), 2157–2186 (2019)

Jin, B., Zhou, Z.: Incomplete iterative solution of subdiffusion. Preprint. arXiv:1906.06497 (2019)

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006)

Lin, X.-L., Lu, X., Ng, M.K., Sun, H.-W.: A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 323, 204–218 (2016)

Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533–1552 (2007)

Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

Lubich, C., Sloan, I.H., Thomée, V.: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math. Comput. 65(213), 1–17 (1996)

Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016)

Saad, Y.: Iterative Methods for Sparse Linear Systems, second edn. SIAM, Philadelphia (2003)

Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, second edn. Springer, Berlin (2006)

Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)

Xing, Y., Yan, Y.: A higher order numerical method for time fractional partial differential equations with nonsmooth data. J. Comput. Phys. 357, 305–323 (2018)

Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)