Multifunctional elastomer nanocomposites with functionalized graphene single sheets

Journal of Polymer Science, Part B: Polymer Physics - Tập 50 Số 13 - Trang 910-916 - 2012
Bulent Ozbas1, Christopher D. O’Neill1, Richard A. Register1, İlhan A. Aksay1, Robert K. Prud’homme1, Douglas H. Adamson2
1Department of Chemical and Biological Engineering, Princeton University, Odian Street, Princeton, New Jersey 08544
2Department of Chemistry and Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Storrs, Connecticut 06269

Tóm tắt

AbstractWe demonstrate the use of functionalized graphene sheets (FGSs) as multifunctional nanofillers to improve mechanical properties, lower gas permeability, and impart electrical conductivity for several distinct elastomers. FGS consists mainly of single sheets of crumbled graphene containing oxygen functional groups and is produced by the thermal exfoliation of oxidized graphite (GO). The present investigation includes composites of FGS and three elastomers: natural rubber (NR), styrene–butadiene rubber, and polydimethylsiloxane (PDMS). All of these elastomers show similar and significant improvements in mechanical properties with FGS, indicating that the mechanism of property improvement is inherent to the FGS and not simply a function of chemical crosslinking. The decrease in gas permeability is attributed to the high aspect ratio of the FGS sheets. This creates a tortuous path mechanism of gas diffusion; fitting the permeability data to the Nielsen model yields an aspect ratio of ∼1000 for the FGS. Electrical conductivity is demonstrated at FGS loadings as low as 0.08% in PDMS and reaches 0.3 S/m at 4 wt % loading in NR. This combination of functionalities imparted by FGS is shown to result from its high aspect ratio and carbon‐based structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012

Từ khóa


Tài liệu tham khảo

10.1021/ma100572e

10.1021/cm100477v

10.1016/j.polymer.2007.06.046

10.1002/pen.20921

10.1021/cm0630800

10.1021/jp060936f

10.1016/j.polymer.2010.11.042

10.1002/anie.201007520

10.1002/pi.2064

10.1016/S0266-3538(03)00066-6

10.1016/j.scriptamat.2005.09.014

10.1002/app.20358

10.1016/j.compstruct.2006.04.035

10.1016/j.materresbull.2006.06.027

10.1002/app.1976

10.1002/app.21408

10.1002/pen.20217

10.1021/cm020093e

10.1002/pi.1161

10.1002/app.20401

10.1002/app.25299

10.1002/polb.20036

10.1002/app.21409

10.1002/pen.760160512

10.1016/0001-6160(73)90064-3

10.1007/BF00581070

10.1016/j.polymer.2003.10.100

10.5254/1.3538448

10.1006/jcis.2000.7160

10.1002/app.1995.070550102

10.1021/jp9731821

10.1021/ma0212700

10.1021/ma9910080

10.1063/1.1900927

10.5254/1.3547760

10.1021/ma035985u

10.1103/PhysRevB.72.121404

10.1016/S0032-3861(03)00539-1

10.1002/adma.200401649

10.1016/S0032-3861(99)00166-4

10.1063/1.1616976

10.1021/ma049164g

10.1002/polb.10701

10.1021/ma00186a037

10.1039/fd9950100093

Winter H. H., 1997, 164

10.1023/A:1004664225015

10.1002/(SICI)1097-4628(19990207)71:6<887::AID-APP4>3.0.CO;2-D

10.1002/app.20721

10.1103/PhysRevLett.96.176101

Evans D. F., 1999, The Colloidal Domain

10.1021/la0609219

10.1088/0953-8984/16/15/002

10.1016/j.polymer.2006.02.069

10.1021/ma010780b