Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants

Biomaterials - Tập 84 - Trang 301-314 - 2016
Jordan Raphel1, Mark Holodniy2,3, Stuart B. Goodman4, Sarah C. Heilshorn1
1Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
2Division of Infectious Diseases & Geographic Medicine, Stanford University, Stanford, CA, USA
3Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
4Department of Orthopaedic Surgery and Bioengineering, Stanford University, Stanford, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kurtz, 2007, Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030, J. Bone Jt. Surg. Am., 89, 780, 10.2106/00004623-200704000-00012

Cdc. National hospital discharge survey, Available from: http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm accessed: August, 2015.

Kurtz, 2005, Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002, J. Bone Jt. Surg. Am., 87, 1487

Bozic, 2010, The epidemiology of revision total knee arthroplasty in the United States, Clin. Orthop. Relat. Res., 468, 45, 10.1007/s11999-009-0945-0

Bozic, 2009, The epidemiology of revision total hip arthroplasty in the United States, J. Bone Jt. Surg. Am., 91, 128, 10.2106/JBJS.H.00155

Sundfeldt, 2006, Aseptic loosening, not only a question of wear: a review of different theories, Acta Orthop., 77, 177, 10.1080/17453670610045902

Costerton, 1999, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318

Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821

Campoccia, 2006, The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, 27, 2331, 10.1016/j.biomaterials.2005.11.044

Greenfield, 2005, Does endotoxin contribute to aseptic loosening of orthopedic implants?, J. Biomed. Mater. Res. B Appl. Biomater., 72, 179, 10.1002/jbm.b.30150

Zhao, 2009, Antibacterial coatings on titanium implants, J. Biomed. Mater. Res. B Appl. Biomater., 91, 470, 10.1002/jbm.b.31463

Campoccia, 2013, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, 34, 8533, 10.1016/j.biomaterials.2013.07.089

Costa, 2011, Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces, Acta Biomater., 7, 1431, 10.1016/j.actbio.2010.11.005

Knetsch, 2011, New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles, Polymers, 3, 340, 10.3390/polym3010340

Simchi, 2011, Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications, Nanomedicine, 7, 22, 10.1016/j.nano.2010.10.005

Branemark, 2001, Osseointegration in skeletal reconstruction and rehabilitation: a review, J. Rehabil. Res. Dev., 38, 175

Goodman, 2013, The future of biologic coatings for orthopaedic implants, Biomaterials, 34, 3174, 10.1016/j.biomaterials.2013.01.074

Wennerberg, 2009, Effects of titanium surface topography on bone integration: a systematic review, Clin. Oral Implants Res., 20, 172, 10.1111/j.1600-0501.2009.01775.x

Gristina, 1987, Biomaterial-centered infection: microbial adhesion versus tissue integration, Science, 237, 1588, 10.1126/science.3629258

Goodman, 1994, The effects of micromotion and particulate materials on tissue differentiation. Bone chamber studies in rabbits, Acta Orthop. Scand. Suppl., 258, 1, 10.3109/17453679409155227

Valstar, 2002, The use of Roentgen stereophotogrammetry to study micromotion of orthopaedic implants, ISPRS J. Photogramm. Remote Sens., 56, 376, 10.1016/S0924-2716(02)00064-3

Schmalzried, 1992, Periprosthetic bone loss in total hip arthroplasty. Polyethylene wear debris and the concept of the effective joint space, J. Bone Jt. Surg. Am., 74, 849, 10.2106/00004623-199274060-00006

Amstutz, 1992, Mechanism and clinical significance of wear debris-induced osteolysis, Clin. Orthop. Relat. Res., 7

Fournier, 2014, Superelastic orthopedic implant coatings, J. Mater. Eng. Perform., 23, 2464, 10.1007/s11665-014-1008-6

Bobyn, 1980, The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone, Clin. Orthop. Relat. Res., 263

Ryan, 2006, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials, 27, 2651, 10.1016/j.biomaterials.2005.12.002

Shabalovskaya, 2008, Critical overview of nitinol surfaces and their modifications for medical applications, Acta Biomater., 4, 447, 10.1016/j.actbio.2008.01.013

Von See, 2010, Bone augmentation after soft-tissue expansion using hydrogel expanders: effects on microcirculation and osseointegration, Clin. Oral Implants Res., 21, 842, 10.1111/j.1600-0501.2009.01847.x

Srouji, 2005, Mandibular defect repair by TGF-beta and IGF-1 released from a biodegradable osteoconductive hydrogel, J. Craniomaxillofac. Surg., 33, 79, 10.1016/j.jcms.2004.09.003

Drury, 2003, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, 24, 4337, 10.1016/S0142-9612(03)00340-5

Saito, 2001, A biodegradable polymer as a cytokine delivery system for inducing bone formation, Nat. Biotechnol., 19, 332, 10.1038/86715

Laverty, 2012, Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections, J. Biomed. Mater. Res. A, 100, 1803, 10.1002/jbm.a.34132

Ahmed, 2014, Improvement of corrosion resistance and antibacterial effect of NiTi orthopedic materials by chitosan and gold nanoparticles, App Surf. Sci., 292, 390, 10.1016/j.apsusc.2013.11.150

Engh, 1987, Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results, J. Bone Jt. Surg. Br., 69, 45, 10.1302/0301-620X.69B1.3818732

Albrektsson, 2001, Osteoinduction, osteoconduction and osseointegration, Eur. Spine J., 10, S96

Kawamura, 2001, The porous coated anatomic total hip replacement. A ten to fourteen-year follow-up study of a cementless total hip arthroplasty, J. Bone Jt. Surg. Am., 83-A, 1333, 10.2106/00004623-200109000-00007

Hailer, 2015, Hydroxyapatite coating does not improve uncemented stem survival after total hip arthroplasty!, Acta Orthop., 86, 18, 10.3109/17453674.2014.957088

Legeros, 2002, Properties of osteoconductive biomaterials: calcium phosphates, Clin. Orthop. Relat. Res., 81

Fielding, 2012, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater., 8, 3144, 10.1016/j.actbio.2012.04.004

Chen, 2007, Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process, J. Biomed. Mater. Res. A, 82, 899, 10.1002/jbm.a.31197

Kazemzadeh-Narbat, 2012, Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium, J. Biomed. Mater. Res. B Appl. Biomater., 100, 1344, 10.1002/jbm.b.32701

Pan, 2011, Enhancing the antibacterial activity of biomimetic HA coatings by incorporation of norvancomycin, J. Orthop. Sci., 16, 105, 10.1007/s00776-010-0017-z

Uskokovic, 2013, Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis, Mater. Sci. Eng. C Mater. Biol. Appl., 33, 3362, 10.1016/j.msec.2013.04.023

Harrison, 2013, Micromotion and friction evaluation of a novel surface architecture for improved primary fixation of cementless orthopaedic implants, J. Mech. Behav. Biomed. Mater., 21, 37, 10.1016/j.jmbbm.2013.01.017

Harrison, 2014, Preclinical trial of a novel surface architecture for improved primary fixation of cementless orthopaedic implants, Clin. Biomech. Bristol. Avon., 29, 861, 10.1016/j.clinbiomech.2014.07.007

Lan, 2015, Promoting bone mesenchymal stem cells and inhibiting bacterial adhesion of acid-etched nanostructured titanium by ultraviolet functionalization, J. Mater. Sci. Technol., 31, 182, 10.1016/j.jmst.2014.08.007

Huang, 2014, The construction of hierarchical structure on Ti substrate with superior osteogenic activity and intrinsic antibacterial capability, Sci. Rep., 4, 6172, 10.1038/srep06172

Luo, 2015, Topography-dependent antibacterial, osteogenic, and anti-aging properties of pure titanium, J. Mater. Chem. B, 3, 784, 10.1039/C4TB01556H

Jones, 2013, Review of bioactive glass: from Hench to hybrids, Acta Biomater., 9, 4457, 10.1016/j.actbio.2012.08.023

Hench, 2006, The story of bioglass, J. Mater. Sci. Mater. Med., 17, 967, 10.1007/s10856-006-0432-z

Ordikhani, 2014, Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential, App. Surf. Sci., 317, 56, 10.1016/j.apsusc.2014.07.197

Patel, 2012, Chitosan-nanobioactive glass elecrophoretic coatings with bone regenerative and drug delivering potential, J. Mater. Chem., 22, 24945, 10.1039/c2jm33830k

Bandyopadhyay, 2015, 3D printing of biomaterials, MRS Bull., 40, 108, 10.1557/mrs.2015.3

Regis, 2015, Additive manufacturing of trabecular titanium orthopedic implants, MRS Bull., 40, 137, 10.1557/mrs.2015.1

Tarafder, 2013, 3D printed tricalcium phosphate scaffolds: effect of SrO and MgO doping on osteogenesis in a rat distal femoral defect model, Biomater. Sci., 1, 1250, 10.1039/c3bm60132c

Tarafder, 2013, Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering, J. Tissue Eng. Regen. Med., 7, 631, 10.1002/term.555

Maleksaeedi, 2013, Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth, Procedia CIRP, 5, 158, 10.1016/j.procir.2013.01.032

Bronk, 2014, A multifunctional streptococcal collagen-mimetic protein coating prevents bacterial adhesion and promotes osteoid formation on titanium, Acta Biomater., 10, 3354, 10.1016/j.actbio.2014.04.005

Tu, 2012, Preparation and antibiotic drug release of mineralized collagen coatings on titanium, J. Mater. Sci. Mater. Med., 23, 2413, 10.1007/s10856-012-4692-5

Zhang, 2008, Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion, Biomaterials, 29, 4751, 10.1016/j.biomaterials.2008.08.043

Bessa, 2008, Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part II (BMP delivery), J. Tissue Eng. Regen. Med., 2, 81, 10.1002/term.74

Shi, 2009, Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration, Biomacromolecules, 10, 1603, 10.1021/bm900203w

Lee, 2012, Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration, Bone, 50, 974, 10.1016/j.bone.2012.01.007

Liu, 2009, Trafficking and differentiation of mesenchymal stem cells, J. Cell Biochem., 106, 984, 10.1002/jcb.22091

Kitaori, 2009, Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model, Arthritis Rheum., 60, 813, 10.1002/art.24330

Kortesidis, 2005, Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells, Blood, 105, 3793, 10.1182/blood-2004-11-4349

Fong, 2011, Stem cell homing in musculoskeletal injury, Biomaterials, 32, 395, 10.1016/j.biomaterials.2010.08.101

Zwingenberger, 2014, Enhancement of BMP-2 induced bone regeneration by SDF-1alpha mediated stem cell recruitment, Tissue Eng. Part A, 20, 810

Higashino, 2011, Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation, Tissue Eng. Part A, 17, 523, 10.1089/ten.tea.2010.0168

Hwang, 2015, Sequential treatment with SDF-1 and BMP-2 potentiates bone formation in calvarial defects, Tissue Eng. Part A, 21, 2125, 10.1089/ten.tea.2014.0571

Nagase, 2002, Cytokine-mediated regulation of CXCR4 expression in human neutrophils, J. Leukoc. Biol., 71, 711, 10.1189/jlb.71.4.711

Oussedik, 2012, Defining peri-prosthetic infection: do we have a workable gold standard?, J. Bone Jt. Surg. Br., 94, 1455, 10.1302/0301-620X.94B11.30244

Jafari, 2010, Revision hip arthroplasty: infection is the most common cause of failure, Clin. Orthop. Relat. Res., 468, 2046, 10.1007/s11999-010-1251-6

Le, 2014, Current modes of failure in TKA: infection, instability, and stiffness predominate, Clin. Orthop. Relat. Res., 472, 2197, 10.1007/s11999-014-3540-y

Kargupta, 2014, Coatings and surface modifications imparting antimicrobial activity to orthopedic implants, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 6, 475, 10.1002/wnan.1273

Zimmerli, 2003, Management of infection associated with prosthetic joints, Infection, 31, 99, 10.1007/s15010-002-3079-9

Emmerson, 1998, A microbiologist's view of factors contributing to infection, New Horiz., 6, S3

Neoh, 2012, Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces, Biomaterials, 33, 2813, 10.1016/j.biomaterials.2012.01.018

Kingshott, 2003, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion, Langmuir, 19, 6912, 10.1021/la034032m

Harris, 2004, Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers, Biomaterials, 25, 4135, 10.1016/j.biomaterials.2003.11.033

Yang, 2005, The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells, Biomaterials, 26, 5991, 10.1016/j.biomaterials.2005.03.018

Shi, 2009, Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions, Tissue Eng. Part A, 15, 417, 10.1089/ten.tea.2007.0415

Klock, 2015, Expanding the polymer mechanochemistry toolbox through surface-initiated polymerization, ACS Macro Lett., 4, 636, 10.1021/acsmacrolett.5b00295

Popat, 2007, Influence of engineered titania nanotubular surfaces on bone cells, Biomaterials, 28, 3188, 10.1016/j.biomaterials.2007.03.020

Das, 2008, Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants, J. Biomed. Mater. Res. B Appl. Biomater., 87, 455, 10.1002/jbm.b.31125

Peng, 2013, Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion, Int. J. Nanomed., 8, 3093

Izquierdo-Barba, 2015, Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation, Acta Biomater., 15, 20, 10.1016/j.actbio.2014.12.023

Li, 2014, Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: in vitro and in vivo studies, J. Biomed. Mater. Res. A, 102, 3939, 10.1002/jbm.a.35060

Zhao, 2011, Antibacterial nano-structured titania coating incorporated with silver nanoparticles, Biomaterials, 32, 5706, 10.1016/j.biomaterials.2011.04.040

Hang, 2014, Antibacterial activity and cytocompatibility of Cu-Ti-O nanotubes, J. Biomed. Mater. Res. A, 102, 1850, 10.1002/jbm.a.34847

Eckhardt, 2013, Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine, Chem. Rev., 113, 4708, 10.1021/cr300288v

Cao, 2011, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects, Biomaterials, 32, 693, 10.1016/j.biomaterials.2010.09.066

Cao, 2014, Cellular responses to titanium successively treated by magnesium and silver PIII&D, Surf. Coat. Tech., 256, 9, 10.1016/j.surfcoat.2013.11.006

Cao, 2013, Electron storage mediated dark antibacterial action of bound silver nanoparticles: smaller is not always better, Acta Biomater., 9, 5100, 10.1016/j.actbio.2012.10.017

Qiao, 2015, Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs, Int. J. Nanomed., 10, 653

Jin, 2014, Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium, Biomaterials, 35, 7699, 10.1016/j.biomaterials.2014.05.074

Huang, 2014, Enhanced osteoblast functions and bactericidal effect of Ca and Ag dual-ion implanted surface layers on nanograined titanium alloys, J. Mater. Chem. B, 2, 4531, 10.1039/c4tb00124a

Di Martino, 2005, Chitosan: a versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, 26, 5983, 10.1016/j.biomaterials.2005.03.016

Shi, 2006, Therapeutic potential of chitosan and its derivatives in regenerative medicine, J. Surg. Res., 133, 185, 10.1016/j.jss.2005.12.013

Dash, 2011, Chitosan – a versatile semi-synthetic polymer in biomedical applications, Prog. Polym. Sci., 36, 981, 10.1016/j.progpolymsci.2011.02.001

Rabea, 2003, Chitosan as antimicrobial agent: applications and mode of action, Biomacromolecules, 4, 1457, 10.1021/bm034130m

Shi, 2008, Bacterial adhesion and osteoblast function on titanium with surface-grafted chitosan and immobilized RGD peptide, J. Biomed. Mater. Res. A, 86, 865, 10.1002/jbm.a.31648

Chua, 2008, Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion, Biomaterials, 29, 1412, 10.1016/j.biomaterials.2007.12.019

Zheng, 2013, Assessment of stability of surface anchors for antibacterial coatings and immobilized growth factors on titanium, J. Colloid Interface Sci., 406, 238, 10.1016/j.jcis.2013.05.060

Ordikhani, 2014, Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections, Mater. Sci. Eng. C Mater. Biol. Appl., 41, 240, 10.1016/j.msec.2014.04.036

Mattioli-Belmonte, 2014, Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants, Carbohydr. Polym., 110, 173, 10.1016/j.carbpol.2014.03.097

Zhao, 2014, Surface functionalization of titanium substrates with chitosan-lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion, Colloids Surf. B, 119, 115, 10.1016/j.colsurfb.2014.05.002

Del Pozo, 2009, Clinical practice. Infection associated with prosthetic joints, N. Engl. J. Med., 361, 787, 10.1056/NEJMcp0905029

Van De Belt, 2001, Infection of orthopedic implants and the use of antibiotic-loaded bone cements. A review, Acta Orthop. Scand., 72, 557, 10.1080/000164701317268978

Dunne, 2002, Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev., 15, 155, 10.1128/CMR.15.2.155-166.2002

Hetrick, 2006, Reducing implant-related infections: active release strategies, Chem. Soc. Rev., 35, 780, 10.1039/b515219b

Costerton, 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol., 41, 435, 10.1146/annurev.mi.41.100187.002251

Antoci, 2007, Covalently attached vancomycin provides a nanoscale antibacterial surface, Clin. Orthop. Relat. Res., 461, 81, 10.1097/BLO.0b013e3181123a50

Antoci, 2008, The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection, Biomaterials, 29, 4684, 10.1016/j.biomaterials.2008.08.016

Hickok, 2012, Immobilized antibiotics to prevent orthopaedic implant infections, Adv. Drug Deliv. Rev., 64, 1165, 10.1016/j.addr.2012.03.015

Marambio-Jones, 2010, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, J. Nanopart. Res., 12, 1531, 10.1007/s11051-010-9900-y

Asharani, 2009, Cytotoxicity and genotoxicity of silver nanoparticles in human cells, ACS Nano, 3, 279, 10.1021/nn800596w

Liu, 2012, The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel, Biomaterials, 33, 8745, 10.1016/j.biomaterials.2012.08.010

Gao, 2014, The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts, Biomaterials, 35, 4223, 10.1016/j.biomaterials.2014.01.058

Agarwal, 2010, Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells, Biomaterials, 31, 680, 10.1016/j.biomaterials.2009.09.092

Tilmaciu, 2015, In vitro and in vivo characterization of antibacterial activity and biocompatibility: a study on silver-containing phosphonate monolayers on titanium, Acta Biomater., 15, 266, 10.1016/j.actbio.2014.12.020

Finley, 2015, Unprecedented silver resistance in clinically isolated enterobacteriaceae: major implications for burn and wound management, Antimicrob. Agents Chemother., 59, 4734, 10.1128/AAC.00026-15

Hu, 2012, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium, Acta Biomater., 8, 904, 10.1016/j.actbio.2011.09.031

Huo, 2013, Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays, Biomaterials, 34, 3467, 10.1016/j.biomaterials.2013.01.071

Jin, 2014, Osteogenic activity and antibacterial effect of zinc ion implanted titanium, Colloids Surf. B, 117, 158, 10.1016/j.colsurfb.2014.02.025

Tsai, 2013, Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants, Thin Solid Films, 528, 143, 10.1016/j.tsf.2012.05.093

Svensson, 2013, Osseointegration of titanium with an antimicrobial nanostructured noble metal coating, Nanomedicine, 9, 1048, 10.1016/j.nano.2013.04.009

Popat, 2007, Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes, Biomaterials, 28, 4880, 10.1016/j.biomaterials.2007.07.037

Ulijn, 2007, Bioresponsive hydrogels, Mater. Today, 10, 40, 10.1016/S1369-7021(07)70049-4

Wang, 2005, Bioresponsive phosphoester hydrogels for bone tissue engineering, Tissue Eng., 11, 201, 10.1089/ten.2005.11.201

Singh, 2011, Bioresponsive mesoporous silica nanoparticles for triggered drug release, J. Am. Chem. Soc., 133, 19582, 10.1021/ja206998x

Pornpattananangkul, 2011, Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection, J. Am. Chem. Soc., 133, 4132, 10.1021/ja111110e

Fjell, 2012, Designing antimicrobial peptides: form follows function, Nat. Rev. Drug Discov., 11, 37, 10.1038/nrd3591

Hancock, 2006, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 24, 1551, 10.1038/nbt1267

Kazemzadeh-Narbat, 2010, Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections, Biomaterials, 31, 9519, 10.1016/j.biomaterials.2010.08.035

Kazemzadeh-Narbat, 2013, Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections, Biomaterials, 34, 5969, 10.1016/j.biomaterials.2013.04.036

Gao, 2011, The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides, Biomaterials, 32, 3899, 10.1016/j.biomaterials.2011.02.013

Rathinakumar, 2009, Broad-spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening: the importance of interfacial activity, J. Am. Chem. Soc., 131, 7609, 10.1021/ja8093247

Maloy, 1995, Structure-activity studies on magainins and other host defense peptides, Biopolymers, 37, 105, 10.1002/bip.360370206

Hamamoto, 2002, Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions, Microbiol. Immunol., 46, 741, 10.1111/j.1348-0421.2002.tb02759.x

Sweet, 1996, Endotoxin signal transduction in macrophages, J. Leukoc. Biol., 60, 8, 10.1002/jlb.60.1.8

Pajarinen, 2014, Innate immune reactions in septic and aseptic osteolysis around hip implants, J. Long. Term. Eff. Med. Implants, 24, 283, 10.1615/JLongTermEffMedImplants.2014010564

Benoit, 2008, Macrophage polarization in bacterial infections, J. Immunol., 181, 3733, 10.4049/jimmunol.181.6.3733

Teitelbaum, 2000, Bone resorption by osteoclasts, Science, 289, 1504, 10.1126/science.289.5484.1504

Boyle, 2003, Osteoclast differentiation and activation, Nature, 423, 337, 10.1038/nature01658

Jimi, 2004, Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo, Nat. Med., 10, 617, 10.1038/nm1054

Morony, 1999, A chimeric form of osteoprotegerin inhibits hypercalcemia and bone resorption induced by IL-1beta, TNF-alpha, PTH, PTHrP, and 1, 25(OH)2D3, J. Bone Min. Res., 14, 1478, 10.1359/jbmr.1999.14.9.1478

Franz, 2011, Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials, Biomaterials, 32, 6692, 10.1016/j.biomaterials.2011.05.078

Oberholzer, 2001, Sepsis syndromes: understanding the role of innate and acquired immunity, Shock, 16, 83, 10.1097/00024382-200116020-00001

Bowdish, 2005, Impact of LL-37 on anti-infective immunity, J. Leukoc. Biol., 77, 451, 10.1189/jlb.0704380

Scott, 2007, An anti-infective peptide that selectively modulates the innate immune response, Nat. Biotechnol., 25, 465, 10.1038/nbt1288

Hilchie, 2013, Immune modulation by multifaceted cationic host defense (antimicrobial) peptides, Nat. Chem. Biol., 9, 761, 10.1038/nchembio.1393