Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels

Small - Tập 14 Số 45 - 2018
Ji Liu1,2, Haobin Zhang1, Xi Xie3, Rui Yang3, Zhangshuo Liu2, Yafeng Liu1, Zhong‐Zhen Yu1,2
1Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
2State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

Tóm tắt

Abstract2D transition metal carbides and nitrides (MXenes) have gained extensive attention recently due to their versatile surface chemistry, layered structure, and intriguing properties. The assembly of MXene sheets into macroscopic architectures is an important approach to harness their extraordinary properties. However, it is difficult to construct a freestanding, mechanically flexible, and 3D framework of MXene sheets owing to their weak intersheet interactions. Herein, an interfacial enhancement strategy to construct multifunctional, superelastic, and lightweight 3D MXene architectures by bridging individual MXene sheets with polyimide macromolecules is developed. The resulting lightweight aerogel exhibits superelasticity with large reversible compressibility, excellent fatigue resistance (1000 cycles at 50% strain), 20% reversible stretchability, and high electrical conductivity of ≈4.0 S m−1. The outstanding mechanical flexibility and electrical conductivity make the aerogel promising for damping, microwave absorption coating, and flexible strain sensor. More interestingly, an exceptional microwave absorption performance with a maximum reflection loss of −45.4 dB at 9.59 GHz and a wide effective absorption bandwidth of 5.1 GHz are achieved.

Từ khóa


Tài liệu tham khảo

10.1126/science.aaa6502

10.1002/adma.201606794

10.1038/nature06016

10.1002/anie.201210166

10.1021/nn101187z

10.1039/C4CS00181H

10.1002/adma.201102306

10.1002/adma.201304138

10.1038/nenergy.2017.105

10.1038/nature13970

10.1073/pnas.1414215111

10.1002/adfm.201702807

10.1002/aelm.201600255

10.1002/adma.201504657

10.1038/s41467-017-01136-9

10.1126/science.aag2421

10.1002/adma.201702367

10.1002/anie.201609306

10.1002/adma.201702410

10.1002/adma.201701553

10.1002/adfm.201601741

10.1093/nsr/nwu072

10.1021/acsnano.7b06909

10.1021/acsnano.7b07528

10.1002/adfm.201803938

10.1039/C7NR07346A

10.1002/adma.201204530

10.1038/ncomms2251

10.1016/j.carbon.2010.08.006

10.1002/aenm.201601847

10.1039/C4RA13015D

10.1021/acsnano.5b02781

10.1038/nnano.2008.96

10.1021/acs.nanolett.5b00737

10.1021/acs.chemmater.7b00745

10.1016/j.carbon.2018.02.026

10.1039/C6RA10384G

10.1002/adma.200304485

10.1021/acsami.6b06455

10.1039/C7TC01991B

10.1039/C6TC05226F

10.1021/acsami.7b04602

10.1016/j.matchemphys.2017.05.057

10.1002/adma.201405788

10.1038/nnano.2014.248

10.1021/ma9601880

10.1088/0022-3727/36/5/323

10.1021/nn9010472

10.1063/1.373079

10.1021/cm103441u

10.1002/adma.201503149