Multifunctional Sandwich‐Structured Electrolyte for High‐Performance Lithium–Sulfur Batteries

Advanced Science - Tập 5 Số 3 - 2018
Hongtao Qu1,2, Jianjun Zhang1,2, Aobing Du1,2, Bingbing Chen1, Jingchao Chai1,2, Nan Xue1,2, Longlong Wang1,2, Lixin Qiao1, Chen Wang1,2, Xiao Zang1, Jinfeng Yang1,2, Xiaogang Wang1, Guanglei Cui1
1Qingdao Industrial Energy Storage Technology Institute Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
2University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China

Tóm tắt

AbstractDue to its high theoretical energy density (2600 Wh kg−1), low cost, and environmental benignity, the lithium–sulfur (Li‐S) battery is attracting strong interest among the various electrochemical energy storage systems. However, its practical application is seriously hampered by the so‐called shuttle effect of the highly soluble polysulfides. Herein, a novel design of multifunctional sandwich‐structured polymer electrolyte (polymer/cellulose nonwoven/nanocarbon) for high‐performance Li‐S batteries is demonstrated. It is verified that Li‐S battery with this sandwich‐structured polymer electrolyte delivers excellent cycling stability (only 0.039% capacity decay cycle−1 on average exceeding 1500 cycles at 0.5 C) and rate capability (with a reversible capacity of 594 mA h g−1 at 4 C). These electrochemical performances are attributed to the synergistic effect of each layer in this unique sandwich‐structured polymer electrolyte including steady lithium stripping/plating, strong polysulfide absorption ability, and increased redox reaction sites. More importantly, even with high sulfur loading of 4.9 mg cm−2, Li‐S battery with this sandwich‐structured polymer electrolyte can deliver high initial areal capacity of 5.1 mA h cm−2. This demonstrated strategy here may open up a new era of designing hierarchical structured polymer electrolytes for high‐performance Li‐S batteries.

Từ khóa


Tài liệu tham khảo

10.1126/science.1212741

10.1038/35104644

10.1007/978-981-10-0746-0_1

10.1038/nenergy.2016.132

10.1002/anie.201304762

10.1002/adma.201700449

10.1002/adma.201606454

10.1149/1.1571532

10.1016/j.jpowsour.2008.07.034

10.1149/1.3479828

10.1002/adma.201405115

10.1149/1.1815153

10.1149/2.020211jes

10.1149/1.1806394

10.1002/adfm.201302915

10.1002/adma.201702829

10.1002/adma.201601759

10.1039/C7TA01346A

10.1002/adfm.201302631

10.1039/C6CP07650E

10.1039/C4EE01377H

10.1021/acs.jpclett.7b01321

10.1021/acs.nanolett.7b00221

10.1016/j.jpowsour.2008.03.030

10.1149/2.0441504jes

10.1039/C7EE01004D

10.1149/2.1151610jes

10.1016/j.nanoen.2016.02.008

10.1016/j.matlet.2016.10.069

10.1016/j.electacta.2016.08.015

10.1039/C4TA01308E

10.1073/pnas.1703937114

10.1021/am302290n

10.1038/srep03935

10.1039/c3ra45879b

10.1021/sc400370h

10.1149/2.0261506jes

10.1021/ja206955k

10.1039/C5CC04103A

10.1002/aenm.201201080

10.1016/j.jpowsour.2017.01.049

10.1021/acssuschemeng.6b00137

10.1039/C6TA02680J

10.1016/j.carbpol.2017.04.096

10.1021/nl2027684

10.1002/adma.201302877

10.1021/nn401228t

10.1002/aenm.201501082

10.1039/C5RA26476F

10.1016/j.ssi.2015.06.018

10.1002/adfm.201502251

10.1016/j.electacta.2016.03.166

10.1002/adma.201606817

10.1002/adma.201602172

10.1038/nenergy.2016.94

10.1149/2.0891508jes

10.1016/j.nanoen.2016.09.030

10.1016/j.jpowsour.2015.11.109

10.1002/adfm.201602498

10.1039/c3ta11553d

10.1016/j.ssi.2013.01.002

10.1039/C5TA04289E

10.1016/j.carbon.2016.02.007

10.1016/j.jpowsour.2012.12.102

10.1016/j.jpowsour.2012.04.006

10.1002/cssc.201500428

10.1016/j.jpowsour.2004.08.039

10.1016/j.jpowsour.2013.08.041

10.1149/1.3148721

10.1002/aenm.201402273

10.1002/adfm.201606663

10.1039/C5QI00153F

10.1007/BF00813015

10.1002/advs.201500071

10.1038/ncomms6002

10.1038/ncomms6682