Các vật liệu hợp kim nền kim loại đa chức năng qua quy trình sản xuất bổ sung bằng khuấy ma sát

Shi Yan1, Ling Chen1, Andrew Yob1, D. Renshaw1, Kai Yang1, Michel Givord1, Daniel Liang1
1Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia

Tóm tắt

Tóm tắtChúng tôi báo cáo về một loại vật liệu hợp kim nền kim loại (MMC) đa chức năng, kết hợp các tính chất cấu trúc và chức năng, có khả năng cung cấp sự bảo vệ đáng kể chống lại các nguy cơ môi trường trong không gian, mà không phải chịu sự gia tăng về trọng lượng và kích thước hoặc khả năng mở rộng kém. Được hình thành qua quy trình sản xuất bổ sung bằng khuấy ma sát (FSAM) có thể mở rộng, các MMC này được bổ sung với một mức độ hạt gốm hoặc kim loại phân bố đồng nhất vượt quá 30%. Cấu trúc vi mô của các nền kim loại giữa các hạt bổ sung này được tinh chế đáng kể bởi quy trình FSAM cũng như bởi sự hiện diện của một lượng lớn hạt, ví dụ, khoảng cách giữa các hạt xuống dưới 1 µm trong các MMC nhôm. Do đó, sự kết hợp giữa nồng độ cao của hạt gốm và kim loại và việc tinh chế ma trận MMC bởi quy trình FSAM không chỉ cải thiện các tính chất cơ học, chẳng hạn như độ cứng và khả năng chống mài mòn mà còn tích hợp các chức năng của những hạt được bổ sung vào trong MMCs. Các tính chất chức năng tích hợp này có thể được kiểm soát để cung cấp khả năng bảo vệ hiệu quả khỏi bức xạ hạt, cải thiện khả năng chịu nhiệt độ cao, tăng cường lực ma sát tại các bề mặt tiếp xúc, v.v., điều này rất quan trọng để giảm thiểu các mối nguy hiểm của môi trường không gian.

Từ khóa


Tài liệu tham khảo

G. Reitz, Characteristic of the Radiation Field in Low Earth Orbit and in Deep Space, Z. Med. Phys., 2008, 18, p 233–243.

J.C. Chancellor, G.B.I. Scott and J.P. Sutton, Space Radiation: The Number One Risk to Astronaut Health Beyond Low Earth Orbit, Life, 2014, 4(3), p 491–510.

F.A. Cucinotta, M.H.Y. Kim and L. Ren, Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks, Radiat. Meas, 2006, 41(9–10), p 1173–1185.

S. Nambiar and J.T.W. Yeow, Polymer-Composite Materials for Radiation Protection, ACS Appl. Mater. Interfaces, 2012, 4(11), p 5717–5726.

M. Usta and A. Toza, The Effect of the Ceramic Amount on the Radiation Shielding Properties of Metal-Matrix Composite Coatings, Radiat. Phys. Chem., 2020, 177, p 1–6.

M. Steffens, F. Hepp, S.K. Höffgen, P. Krzikalla, S. Metzger, F. Pellowski, G. Santin, L. Tiedemann, A. Tighe and U. Weinand, Characterization of Novel Lightweight Radiation Shielding Materials for Space Applications, IEEE Trans. Nucl. Sci., 2017, 64(8), p 2325–2332.

M. Peters and C. Leyens, Aerospace and Space Materials, Mater. Sci. Eng., 2009, 3, p 258–269.

A.M. El-Hameed and Y.A. Abdel-Aziz, Aluminium Alloys in Space Applications: A Short Report, J. Adv. Res. Appl. Sci. Eng. Technol., 2021, 22(1), p 1–7.

C. Harrison, E. Burgett, N. Hertel, and E. Gmlke, Polyethylene/Boron Composites for Radiation Shielding Applications, Space Technology and Applications International Forum - STAIF 2008, M.S. El-Genk, Ed. 2008, p 484-491.

J. Kim, B. Lee, Y. Uhmd and W.H. Miller, Enhancement of Thermal Neutron Attenuation of Nano-B4C, -BN Dispersed Neutron Shielding Polymer Nanocomposites, J. Nucl. Mater., 2014, 453, p 48–53.

C. Harrison, S. Weaver, C. Bertelsen, E. Burgett, N. Hertel and E. Grulke, Polyethylene/Boron Nitride Composites for Space Radiation Shielding, J. Appl. Polym. Sci., 2008, 109, p 2529–2538.

E. Cheraghi, S. Chen and J.T.W. Yeow, Boron Nitride-Based Nanomaterials for Radiation Shielding-A Review, IEEE Nanotechnol. Mag., 2021, 15, p 8–17.

M. Naito, S. Kodaira et al., Investigation of Shielding Material Properties for Effective Space Radiation Protection, Life Sci. Space Res., 2020, 26, p 69–76.

A. Kumar, P. Rohatgi and D. Weiss, 50 Years of Foundry-Produced Metal Matrix Composites and Future Opportunities, Int. J. Metalcasting, 2020, 14(2), p 291–317.

A. Macke, B.F. Schultz and P. Rohatgi, Metal Matrix Composites Offer the Automotive Industry an Opportunity to Reduce Vehicle Weight, Improve Performance, Adv. Mater. Process., 2012, 170, p 19–23.

A. Mussatto, I.U. Ahad, R.T. Mousavian, Y. Delaure and D. Brabazon, Advanced Production Routes for Metal Matrix Composites, Eng. Rep., 2021, 3(5), p 1–25.

J. Onoro, M.D. Salvador and L.E.G. Cambronero, High-Temperature Mechanical Properties of Aluminium Alloys Reinforced with Boron Carbide Particles, Mater. Sci. Eng. A, 2009, 499, p 421–426.

K. Shirvanimoghaddam, S.U. Hamim, M.K. Akbari et al., Carbon Fibre Reinforced Metal Matrix Composites: Fabrication Processes and Properties, Compos. Part Appl. Sci. Manuf., 2017, 92, p 70–96.

J. Hashim, L. Looney and M.S.J. Hashmi, Metal Matrix Composites: Production by the Stir Casting Method, J Mater Process Technol., 1999, 92–93, p 1–7.

U.V. Kumar, Method of Stir Casting of Aluminium Metal Matrix Composites: A Review, Mater. Today Proc., 2017, 4(2), p 1140–1146.

Y. Sun, Y. Lyu, A. Jiang and J. Zhao, Fabrication and Characterization of Aluminium Matrix Fly Ash Cenosphere Composites Using Different Stir Casting Routes, J. Mater. Res., 2013, 29(2), p 260–266.

A.E. Nassar and E.E. Nassar, Properties of Aluminium Matrix Nano Composites Prepared by Powder Metallurgy Processing, J King Saud Univ – Eng Sci., 2017, 29(3), p 295–299.

K.S. Munir, P. Kingshott and C. Wen, Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy – A Review, Crit. Rev. Solid State Mater. Sci., 2015, 40(1), p 38–55.

L. He and M. Hassani, A Review of the Mechanical and Tribological Behavior of Cold Spray Metal Matrix Composites, J. Therm. Spray Tech., 2020, 29, p 1565–1608.

L. Gyansah, N.H. Tariq, J.R. Tang, X. Qiu, B. Feng, J. Huang, H. Du, J.Q. Wang and T.Y. Xiong, Cold Spraying SiC/Al Metal Matrix Composites: Effects of SiC Contents and Heat Treatment on Microstructure, Thermophysical and Flexural Properties, Mater. Res. Exp., 2018, 5, 026523.

R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50, p 1–78.

P.L. Threadgill, A.J. Leonard, H.R. Shercliff and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93.

K. Gangwar and M. Ramulu, Friction Stir Welding of Titanium Alloys: A Review, Mater. Des., 2018, 141, p 230–255.

C.J. Lee and J.C. Huang, Mg Based Nano-Composites Fabricated by Friction Stir Processing, Mater. Trans., 2006, 47, p 2773–2778.

Q. Liu, L. Ke, F. Liu, C. Huang and L. Xing, Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminium Matrix Composites Fabricated by Friction Stir Processing, Mater. Des., 2013, 45, p 343–348.

A.K. Srivastava, N. Kumar and A.R. Dixit, Friction Stir Additive Manufacturing – An Innovative Tool to Enhance Mechanical and Microstructural Properties, Mater. Sci. Eng. B, 2021, 263, p 1–25.

H.Z. Yu and R.S. Mishra, Additive Friction Stir Deposition: a Deformation Processing Route to Metal Additive Manufacturing, Mater. Res. Lett., 2021, 9(2), p 71–83.

C. He, Y. Li, Z. Zhang, J. Wei and X. Zhao, Investigation on Microstructural Evolution and Property Variation Along Building Direction in Friction Stir Additive Manufactured Al–Zn–Mg Alloy, Mater. Sci. Eng. A, 2020, 777, 139035.

Y. Mao, L. Ke, C. Huang, F. Liu and Q. Liu, Formation Characteristic, Microstructure and Mechanical Performances of Aluminium-Based Components by Friction Stir Additive Manufacturing, Int. J. Adv. Manuf. Technol., 2016, 83, p 1637–1647.

H.Z. Yu, M.E. Jones, G.W. Brady, R.J. Griffiths, D. Garcia, H.A. Raucha, C.D. Cox and N. Hardwick, Non-Beam-Based Metal Additive Manufacturing Enabled by Additive Friction Stir Deposition, Scr. Mater., 2018, 153, p 122–131.

O.G. Rivera, P.G. Allison, L.N. Brewer, O.L. Rodriguez, J.B. Jordon, T. Liu, W.R. Whittington, R.L. Martens, Z. McClelland, C.J.T. Mason, L. Garcia, J.Q. Su and N. Hardwick, Influence of Texture and Grain Refinement on the Mechanical Behaviour of AA2219 Fabricated by High Shear Solid State Material Deposition, Mater. Sci. Eng. A, 2018, 724, p 547–558.

K. Creehan, and J.P. Schultz, US patent, US 2008/0041921 A1.

C.K. Reed, D.L. Hunn, and M.L. Fortner, Composite material having a layer including entrained particles and method of making same, US patent, US 2011/0113950 A1.

D. Liang, A. Yob, K. Yang, S. Yan, and M. Givord, Method for forming a metal matrix composite structure, Australian Patent 2020900838.

J.J.S. Dilip, S. Babu, S. Varadha Rajan, K.H. Rafi, G.D. Janaki Ram and B.E. Stucker, Use of Friction Surfacing for Additive Manufacturing, Mater. Manuf. Process., 2013, 28(2), p 189–194.

M.R. Roodgari, R. Jamaati and H.J. Aval, Fabrication of a 2-Layer Laminated Steel Composite by Friction Stir Additive Manufacturing, J. Manuf. Process., 2020, 50, p 110–121.

A. Merstallinger, R. Holzbauer and N. Bamsey, Cold Welding in Hold Down Points of Space Mechanisms due to Fretting When Omitting Grease, Lubricants, 2021, 9(8), p 72.

A. Merstallinger, M. Sales, E. Semerad, and B.D. Dunn, Assessment of cold welding between separable contact surfaces due to Impact and fretting under vacuum, ESA Communication Production Office, ESA, STM-279, 2009.

M.R. Johnson, The Galileo High Gain Antenna Deployment Anomaly; California Institute of Technology, Jet Propulsion Laboratory: Pasadena, CA, USA, 1994.

D.G.F. O’Quigley, S. Luyckx and M.N. James, An Empirical Ranking of a Wide Range of WC-Co Grades in Terms of their Abrasion Resistance Measured by the ASTM Standard B 611–85 Test, Int. J. Refract. Met. Hard Mater., 1997, 15, p 73–79.

A. Nastica, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo and M. Nganbe, Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, J. Mater. Sci. Technol., 2015, 31, p 773–783.

J.F. Ziegler, J. Biersack and U. Littmark, The Stopping and Range of Ions in Matter, Treatise on Heavy-Ion Science. D.A. Bromley Ed., Springer, Boston, MA, 1985, p 93–129

J. F. Ziegler, M.D. Ziegler, and J.P. Biersack, SRIM – The stopping and range of ions in matter, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268, p 1818-1823

X. Dong and S. Ji, Si Poisoning and Promotion on the Microstructure and Mechanical Properties of Al–Si–Mg Cast Alloys, J Mater Sci, 2018, 53, p 7778–7792.

M. Prakasam, F. Balima, J. Noudem and A. Largeteau, Dense MgB2 Ceramics by Ultrahigh Pressure Field-Assisted Sintering, Ceramics, 2020, 3, p 521–532.

W. Atwell, K. Rojdev, D. Liang, and M. Hill, Metal hydrides, MOFs, and carbon composites as space radiation shielding mitigators, Paper Number 103, 44th International Conference on Environmental Systems, 13-17 July 2014, Tucson, Arizona, US.

C.E. Kim, K.G. Ray, D.F. Bahr and V. Lordi, Electronic Structure and Surface Properties of MgB2(0001) Upon Oxygen Adsorption, Phys. Rev. B, 2018, 97, 195416.

F. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks and J.D. Jorgensen, Specific Heat of Mg11B2: Evidence for a Second Energy Gap, Phys. Rev. Lett., 2001, 87(4), 047001.

Y. Wang, T. Plackowski and A. Junod, Specific Heat in the Superconducting and Normal State (2–300 K, 0–16 T), and Magnetic Susceptibility of the 38 K Superconductor MgB2: Evidence for a Multicomponent Gap, Physica C, 2001, 355, p 179–193.