Multifunctional Hybrid Three‐dimensionally Woven Scaffolds for Cartilage Tissue Engineering

Macromolecular Bioscience - Tập 10 Số 11 - Trang 1355-1364 - 2010
Franklin T. Moutos1, Bradley T. Estes1, Farshid Guilak2
1Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710, USA
2Departments of Orthopaedic Surgery and Biomedical Engineering, Duke University Medical Center, 375 MSRB, Box 3093, Durham, NC 27710, USA Fax: (919) 681‐8490.

Tóm tắt

AbstractThe successful replacement of large‐scale cartilage defects or osteoarthritic lesions using tissue‐engineering approaches will likely require composite biomaterial scaffolds that have biomimetic mechanical properties and can provide cell‐instructive cues to control the growth and differentiation of embedded stem or progenitor cells. This study describes a novel method of constructing multifunctional scaffolds for cartilage tissue engineering that can provide both mechanical support and biological stimulation to seeded progenitor cells. 3‐D woven PCL scaffolds were infiltrated with a slurry of homogenized CDM of porcine origin, seeded with human ASCs, and cultured for up to 42 d under standard growth conditions. These constructs were compared to scaffolds derived solely from CDM as well as 3‐D woven PCL fabric without CDM. While all scaffolds promoted a chondrogenic phenotype of the ASCs, CDM scaffolds showed low compressive and shear moduli and contracted significantly during culture. Fiber‐reinforced CDM scaffolds and 3‐D woven PCL scaffolds maintained their mechanical properties throughout the culture period, while supporting the accumulation of a cartilaginous extracellular matrix. These findings show that fiber‐reinforced hybrid scaffolds can be produced with biomimetic mechanical properties as well as the ability to promote ASC differentiation and chondrogenesis in vitro. magnified image

Từ khóa


Tài liệu tham khảo

10.1115/1.1318906

10.1097/00003086-200110001-00027

10.3233/BIR-2008-0491

10.1038/nbt1055

10.2217/17460751.1.4.447

10.1016/j.biomaterials.2008.10.040

10.1021/bm0495811

10.1002/bit.10897

10.1002/(SICI)1097-4644(19971215)67:4<478::AID-JCB6>3.0.CO;2-P

10.1016/j.biomaterials.2006.07.037

10.1038/nmat1822

10.1089/ten.tea.2009.0480

10.1016/j.biomaterials.2009.11.092

10.1016/j.jbiomech.2004.07.025

10.1115/1.1324669

10.1089/ten.tea.2008.0253

10.1089/ten.tea.2009.0398

10.1002/art.21779

Diekman B. O., 2009, J. Biomed. Mater. Res. A, 93, 994

10.1002/mabi.200400214

10.1002/pi.1199

10.1016/S0021-9290(97)00031-6

10.1016/0304-4165(86)90306-5

10.1016/0003-9861(61)90291-0

10.1002/bit.21662

10.1006/bbrc.2001.6270

10.1002/jcp.20977

10.1038/sj.mt.6300395

10.1016/j.biomaterials.2007.05.020

Gilbert T. W., 2006, Biomaterials, 27, 3675

10.1002/jor.20531

10.1016/S0022-5347(01)66117-2

10.1016/S0140-6736(08)61598-6

10.1038/nm1684

10.1002/(SICI)1097-4636(199808)41:2<244::AID-JBM9>3.0.CO;2-I

10.1126/science.150.3698.893

10.1089/ten.2006.12.2117

10.1089/ten.2006.0169

10.1115/1.3138202

10.1146/annurev.bioeng.4.110701.120309

10.1002/jor.1100120306

10.1016/S0021-9290(96)00133-9

10.1016/j.joca.2005.09.002

10.1016/j.biomaterials.2003.10.045

10.1089/ten.tea.2008.0099

10.1088/1748-6041/4/1/015019

10.1016/j.jss.2007.12.788

10.1089/ten.2006.12.2729

10.1002/jor.1100090304

10.1016/0021-9290(93)90019-B