Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice

Nano Research - Tập 4 Số 12 - Trang 1248-1260 - 2011
Sarah P. Sherlock1, Hongjie Dai1
1Stanford University

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dewhirst, M. W. Future directions in hyperthermia biology. Int. J. Hyperthermia 1994, 10, 339–345.

Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperthermia 2001, 17, 1–18.

Hahn, G. M.; Braun, J.; Harkedar, I. Thermochemotherapy: Synergism between hyperthermia (42–43°C) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, 937–940.

Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematolo 2002, 43, 33–56.

Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002, 3, 487–497.

Vertrees, R. A.; Jordan, J. M.; Zwischenberger, J. B. Hyperthermia and chemotherapy: The science. In Current Clinical Oncology: Intraperitoneal Cancer Therapy, Helm, C. W.; Edwards, R. P., Eds.; Humana Press Inc.: Totowa, NJ, 2007; pp 71–100.

Helm, C. W.; Edwards, R. P. Current Clinical Oncology: Intraperitoneal Cancer Therapy; Humana Press Inc.: Totowa, NJ, 2007.

Hildebrandt, B.; Wust, P. The biologic rationale of hyperthermia. Cancer Treat. Res. 2007, 134, 171–184.

Purushotham, S.; Chang, P. E. J.; Rumpel, H.; Kee, I. H. C.; Ng, R. T. H.; Chow, P. K. H.; Tan, C. K.; Ramanujan, R. V. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology 2009, 20, 305101.

Power, S.; Slattery, M. M.; Lee, M. J. Nanotechnology and its relationship to interventional radiology. Part II: Drug delivery, thermotherapy, and vascular intervention. Cardiovasc. Intervent. Radiol. 2011, 34, 676–690.

Park, J. H.; von Maltzahn, G.; Ong, L. L.; Centrone, A.; Hatton, T. A.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanoparticles for tumor detection and photo-thermally triggered drug delivery. Adv. Mater. 2010, 22, 880–885.

Park, J. H.; von Maltzahn, G.; Xu, M. J.; Fogal, V.; Kotamraju, V. R.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 981–986.

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

Lee, S. M.; Park, H.; Yoo, K. H. Synergistic cancer therapeutic effects of locally delivered drug and heat using multifunctional nanoparticles. Adv. Mater. 2010, 22, 4049–4053.

Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. Multifunctional nanoparticles for combined doxorubicin and photothermal treatments. ACS Nano 2009, 3, 2919–2926.

Park, H.; Yang, J.; Seo, S.; Kim, K.; Suh, J.; Kim, D.; Haam, S.; Yoo, K. H. Multifunctional nanoparticles for photo-thermally controlled drug delivery and magnetic resonance imaging enhancement. Small 2008, 4, 192–196.

Lee, J. H.; Sherlock, S. P.; Terashima, M.; Kosuge, H.; Suzuki, Y.; Goodwin, A.; Robinson, J.; Seo, W. S.; Liu, Z.; Luong, R. et al. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals. Magn. Reson. Med. 2009, 62, 1497–1509.

Seo, W. S.; Lee, J. H.; Sun, X. M.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P. C.; McConnell, M. V.; Nishimura, D. G. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006, 5, 971–976.

Sherlock, S. P.; Tabakman, S. M.; Xie, L. M.; Dai, H. J. Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals. ACS Nano 2011, 5, 1505–1512.

Bausero, M. A.; Page, D. T.; Osinaga, E.; Asea, A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumor Biol. 2004, 25, 243–251.

Working, P. K.; Dayan, A. D. Pharmacological-toxicological expert report: CAELYX. (Stealth liposomal doxorubicin HCl). Hum. Exp. Toxicol. 1996, 15, 751–785.

Seymour, L. W.; Ulbrich, K.; Strohalm, J.; Kopecek, J.; Duncan, R. The pharmacokinetics of polymer-bound adriamycin. Biochem. Pharmacol. 1990, 39, 1125–1131.

Liu, D. L.; Andersson-Engels, S.; Sturesson, C.; Svanberg, K.; Hakansson, C. H.; Svanberg, S. Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy. Cancer Lett. 1997, 111, 157–165.

Liu, P.; Zhang, A.; Xu, Y.; Xu, L. X. Study of non-uniform nanoparticle liposome extravasation in tumour. Int. J. Hyperthermia 2005, 21, 259–270.

Lu, D.; Wientjes, M. G.; Lu, Z.; Au, J. L. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther. 2007, 322, 80–88.

Kosuge, H.; Sherlock, S. P.; Kitagawa, T.; Terashima, M.; Barral, J. K.; Nishimura, D. G.; Dai, H. J.; McConnell, M. V. FeCo/graphite nanocrystals for multi-modality imaging of experimental vascular inflammation. PLoS One 2011, 6, e14523.

Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q. Z.; Chen, X. Y.; Dai, H. J. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660.

Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668–7672.