Multifaceted roles for lipids in viral infection

Trends in Microbiology - Tập 19 - Trang 368-375 - 2011
Nicholas S. Heaton1, Glenn Randall1
1Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA

Tài liệu tham khảo

Taube, 2010, Glycosphingolipids as receptors for non-enveloped Viruses, Viruses, 2, 1011, 10.3390/v2041011 Tsai, 2003, Gangliosides are receptors for murine polyoma virus and SV40, EMBO J., 22, 4346, 10.1093/emboj/cdg439 Qian, 2009, A lipid receptor sorts polyomavirus from the endolysosome to the endoplasmic reticulum to cause infection, PLoS Pathog., 5, e1000465, 10.1371/journal.ppat.1000465 Agnello, 1999, Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor, Proc. Natl. Acad. Sci. U.S.A., 96, 12766, 10.1073/pnas.96.22.12766 Molina, 2007, The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus, J. Hepatol., 46, 411, 10.1016/j.jhep.2006.09.024 Sabahi, 2009, Hepatitis C virus entry: the early steps in the viral replication cycle, Virol. J., 6, 117, 10.1186/1743-422X-6-117 Dreux, 2009, Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains, PLoS Pathog., 5, e1000310, 10.1371/journal.ppat.1000310 von Hahn, 2008, Hepatitis C virus entry, J. Biol. Chem., 283, 3689, 10.1074/jbc.R700024200 Liao, 2001, Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1, AIDS Res. Hum. Retroviruses, 17, 1009, 10.1089/088922201300343690 Yi, 2006, HIV gp120-induced interaction between CD4 and CCR5 requires cholesterol-rich microenvironments revealed by live cell fluorescence resonance energy transfer imaging, J. Biol. Chem., 281, 35446, 10.1074/jbc.M607302200 Huang, 2006, Human herpesvirus 6 envelope cholesterol is required for virus entry, J. Gen. Virol., 87, 277, 10.1099/vir.0.81551-0 Desplanques, 2008, Plasma membrane cholesterol is required for efficient pseudorabies virus entry, Virology, 376, 339, 10.1016/j.virol.2008.03.039 Sun, 2003, Role for influenza virus envelope cholesterol in virus entry and infection, J. Virol., 77, 12543, 10.1128/JVI.77.23.12543-12551.2003 Mercer, 2010, Virus entry by endocytosis, Annu. Rev. Biochem., 79, 803, 10.1146/annurev-biochem-060208-104626 Zaitseva, 2010, Dengue virus ensures its fusion in late endosomes using compartment-specific lipids, PLoS Pathog., 6, e1001131, 10.1371/journal.ppat.1001131 Keilian, 2010, Alphavirus entry and membrane fusion, Viruses, 796, 10.3390/v2040796 Miller, 2008, Modification of intracellular membrane structures for virus replication, Nat. Rev. Microbiol., 6, 363, 10.1038/nrmicro1890 den Boon, 2010, Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories, Annu. Rev. Microbiol., 64, 241, 10.1146/annurev.micro.112408.134012 Miller, 2003, Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane, J. Virol., 77, 12193, 10.1128/JVI.77.22.12193-12202.2003 Knoops, 2008, SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum, PLoS Biol., 6, e226, 10.1371/journal.pbio.0060226 Welsch, 2009, Composition and three-dimensional architecture of the dengue virus replication and assembly sites, Cell Host Microbe, 5, 365, 10.1016/j.chom.2009.03.007 Gillespie, 2010, The endoplasmic reticulum provides the membrane platform for biogenesis of the flavivirus replication complex, J. Virol., 84, 10438, 10.1128/JVI.00986-10 Kopek, 2007, Three-dimensional analysis of a viral RNA replication complex reveals a virus-induced mini-organelle, PLoS Biol., 5, e220, 10.1371/journal.pbio.0050220 Fontana, 2010, Three-dimensional structure of Rubella virus factories, Virology, 405, 579, 10.1016/j.virol.2010.06.043 Fontana, 2008, The unique architecture of Bunyamwera virus factories around the Golgi complex, Cell. Microbiol., 10, 2012, 10.1111/j.1462-5822.2008.01184.x Egger, 2002, Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex, J. Virol., 76, 5974, 10.1128/JVI.76.12.5974-5984.2002 Gouttenoire, 2010, Amphipathic alpha-helix AH2 is a major determinant for the oligomerization of hepatitis C virus nonstructural protein 4B, J. Virol., 84, 12529, 10.1128/JVI.01798-10 Miller, 2007, The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner, J. Biol. Chem., 282, 8873, 10.1074/jbc.M609919200 Roosendaal, 2006, Regulated cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein, J. Virol., 80, 4623, 10.1128/JVI.80.9.4623-4632.2006 Bienz, 1983, Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures, Virology, 131, 39, 10.1016/0042-6822(83)90531-7 Barco, 1995, A human virus protein, poliovirus protein 2BC, induces membrane proliferation and blocks the exocytic pathway in the yeast Saccharomyces cerevisiae, EMBO J., 14, 3349, 10.1002/j.1460-2075.1995.tb07341.x Cho, 1994, Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells, Virology, 202, 129, 10.1006/viro.1994.1329 Suhy, 2000, Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles, J. Virol., 74, 8953, 10.1128/JVI.74.19.8953-8965.2000 Schwartz, 2004, Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication, Proc. Natl. Acad. Sci. U.S.A., 101, 11263, 10.1073/pnas.0404157101 Berger, 2009, Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication, Proc. Natl. Acad. Sci. U.S.A., 106, 7577, 10.1073/pnas.0902693106 Borawski, 2009, Class III phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators of hepatitis C virus replication, J. Virol., 83, 10058, 10.1128/JVI.02418-08 Tai, 2009, A functional genomic screen identifies cellular cofactors of hepatitis C virus replication, Cell Host Microbe, 5, 298, 10.1016/j.chom.2009.02.001 Vaillancourt, 2009, Identification of a lipid kinase as a host factor involved in hepatitis C virus RNA replication, Virology, 387, 5, 10.1016/j.virol.2009.02.039 Trotard, 2009, Kinases required in hepatitis C virus entry and replication highlighted by small interference RNA screening, FASEB J., 23, 3780, 10.1096/fj.09-131920 Hsu, 2010, Viral reorganization of the secretory pathway generates distinct organelles for RNA replication, Cell, 141, 799, 10.1016/j.cell.2010.03.050 Berger, 2009, Potential roles for cellular cofactors in hepatitis C virus replication complex formation, Commun. Integr. Biol., 2, 471, 10.4161/cib.2.6.9261 Reiss, 2011, Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment, Cell Host Microbe., 9, 32, 10.1016/j.chom.2010.12.002 Diaz, 2010, Membrane-shaping host reticulon proteins play crucial roles in viral RNA replication compartment formation and function, Proc. Natl. Acad. Sci. U.S.A., 107, 16291, 10.1073/pnas.1011105107 Lee, 2003, Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein, J. Virol., 77, 12819, 10.1128/JVI.77.23.12819-12828.2003 Lee, 2001, Mutation of host delta9 fatty acid desaturase inhibits brome mosaic virus RNA replication between template recognition and RNA synthesis, J. Virol., 75, 2097, 10.1128/JVI.75.5.2097-2106.2001 Mackenzie, 2007, Cholesterol manipulation by West Nile virus perturbs the cellular immune response, Cell Host Microbe., 2, 229, 10.1016/j.chom.2007.09.003 Rothwell, 2009, Cholesterol biosynthesis modulation regulates dengue viral replication, Virology, 389, 8, 10.1016/j.virol.2009.03.025 Heaton, 2010, Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis, Proc. Natl. Acad. Sci. U.S.A., 107, 17345, 10.1073/pnas.1010811107 Levental, 2010, Greasing their way: lipid modifications determine protein association with membrane rafts, Biochemistry, 49, 6305, 10.1021/bi100882y Yu, 2006, Palmitoylation and polymerization of hepatitis C virus NS4B protein, J. Virol., 80, 6013, 10.1128/JVI.00053-06 Majeau, 2009, Palmitoylation of hepatitis C virus core protein is important for virion production, J. Biol. Chem., 284, 33915, 10.1074/jbc.M109.018549 Wang, 2005, Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication, Mol. Cell, 18, 425, 10.1016/j.molcel.2005.04.004 Harrison, 2010, Serum cholesterol and statin use predict virological response to peginterferon and ribavirin therapy, Hepatology, 52, 864, 10.1002/hep.23787 Munger, 2006, Dynamics of the cellular metabolome during human cytomegalovirus infection, PLoS Pathog., 2, e132, 10.1371/journal.ppat.0020132 Sanchez, 2010, Alteration of lipid metabolism in cells infected with human cytomegalovirus, Virology, 404, 71, 10.1016/j.virol.2010.04.026 Munger, 2008, Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy, Nat. Biotechnol., 26, 1179, 10.1038/nbt.1500 Yu, 2011, Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection, Trends Microbiol., 19, 360, 10.1016/j.tim.2011.04.002 Delgado, 2010, Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells, Proc. Natl. Acad. Sci. U.S.A., 107, 10696, 10.1073/pnas.1004882107 Blackham, 2010, Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus, J. Virol., 84, 5404, 10.1128/JVI.02529-09 Diamond, 2010, Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics, PLoS Pathog., 6, e1000719, 10.1371/journal.ppat.1000719 Waris, 2007, Hepatitis C virus induces proteolytic cleavage of sterol regulatory element binding proteins and stimulates their phosphorylation via oxidative stress, J. Virol., 81, 8122, 10.1128/JVI.00125-07 Park, 2009, Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway, J. Biol. Chem., 284, 9237, 10.1074/jbc.M808773200 Heaton, 2010, Dengue virus-induced autophagy regulates lipid metabolism, Cell Host Microbe., 8, 422, 10.1016/j.chom.2010.10.006 Miyanari, 2007, The lipid droplet is an important organelle for hepatitis C virus production, Nat. Cell Biol., 9, 1089, 10.1038/ncb1631 Samsa, 2009, Dengue virus capsid protein usurps lipid droplets for viral particle formation, PLoS Pathog., 5, e1000632, 10.1371/journal.ppat.1000632 Bartenschlager, 2011, Assembly of infectious hepatitis C virus particles, Trends Microbiol., 19, 95, 10.1016/j.tim.2010.11.005 Shavinskaya, 2007, The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly, J. Biol. Chem., 282, 37158, 10.1074/jbc.M707329200 Herker, 2010, Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1, Nat. Med., 16, 1295, 10.1038/nm.2238 Nguyen, 2000, Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts, J. Virol., 74, 3264, 10.1128/JVI.74.7.3264-3272.2000 Zheng, 2003, Nef increases the synthesis of and transports cholesterol to lipid rafts and HIV-1 progeny virions, Proc. Natl. Acad. Sci. U.S.A., 100, 8460, 10.1073/pnas.1437453100 Chukkapalli, 2008, Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding, J. Virol., 82, 2405, 10.1128/JVI.01614-07 Ono, 2004, Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane, Proc. Natl. Acad. Sci. U.S.A., 101, 14889, 10.1073/pnas.0405596101 Saad, 2006, Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly, Proc. Natl. Acad. Sci. U.S.A., 103, 11364, 10.1073/pnas.0602818103 Nayak, 2009, Influenza virus morphogenesis and budding, Virus Res., 143, 147, 10.1016/j.virusres.2009.05.010 Freed, 2002, Viral late domains, J. Virol., 76, 4679, 10.1128/JVI.76.10.4679-4687.2002 Fujii, 2007, Beyond Tsg101: the role of Alix in ‘ESCRTing’ HIV-1, Nat. Rev. Microbiol., 5, 912, 10.1038/nrmicro1790 Rossman, 2010, Influenza virus M2 protein mediates ESCRT-independent membrane scission, Cell, 142, 902, 10.1016/j.cell.2010.08.029 Bieniasz, 2006, Late budding domains and host proteins in enveloped virus release, Virology, 344, 55, 10.1016/j.virol.2005.09.044 Jones, 2010, Hepatitis C virus: assembly and release of virus particles, J. Biol. Chem., 285, 22733, 10.1074/jbc.R110.133017 Nielsen, 2006, Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients, J. Virol., 80, 2418, 10.1128/JVI.80.5.2418-2428.2006 Merz, 2011, Biochemical and morphological properties of hepatitis C virus particles and determination of their lipidome, J. Biol. Chem., 286, 3018, 10.1074/jbc.M110.175018 Andre, 2002, Characterization of low- and very-low-density hepatitis C virus RNA-containing particles, J. Virol., 76, 6919, 10.1128/JVI.76.14.6919-6928.2002 Chang, 2007, Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture, J. Virol., 81, 13783, 10.1128/JVI.01091-07 Gastaminza, 2008, Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion, J. Virol., 82, 2120, 10.1128/JVI.02053-07 Doucleff, 2010, Select: lipids out loud, Cell, 143, 853, 10.1016/j.cell.2010.11.048 Chazal, 2003, Virus entry, assembly, budding, and membrane rafts, Microbiol. Mol. Biol. Rev., 67, 226, 10.1128/MMBR.67.2.226-237.2003