Multidrug-resistant mcr-1 gene-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a cat

Brazilian Journal of Microbiology - Tập 52 - Trang 1043-1046 - 2021
Alessandra Tammy Hayakawa Ito de Sousa1,2, Marco Túlio dos Santos Costa1, Herica Makino 1, Stéfhano Luis Cândido1, Isabela de Godoy Menezes3, Nilton Lincopan 4, Luciano Nakazato 1, Valéria Dutra 1
1Laboratory of Microbiology, Veterinary Hospital, Federal University of Mato Grosso, Cuiabá, Brazil
2School of Veterinary Medicine, Federal University of Mato Grosso, Cuiabá, Brazil
3Mycology Laboratory, Faculty of Pharmaceutical Sciences (FCF), University of São Paulo, São Paulo, Brazil
4Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

Tóm tắt

The Klebsiella pneumoniae (K. pneumoniae) bacterium is responsible for many opportunistic infections such as sepsis, and a multidrug-resistant (MDR) clone sequence type (ST) 307 has recently begun to spread. The objective of this study was to report the first occurrence of this virulent genotype, which was found in the context of a urinary infection in a domestic feline in Brazil. The K. pneumoniae isolate was identified from the urine of a 6-month-old male crossbreed cat using 16S rRNA sequencing. It was then subjected to antimicrobial susceptibility testing, followed by multilocus sequence typing analysis, and PCR detection of virulence and resistance genes. The antimicrobial susceptibility profile demonstrated that the isolate was MDR and associated with the presence of the colistin resistance gene (mcr-1). Genotyping allowed us to classify the isolate as K. pneumoniae ST307 with the presence of wabG, uge, and entB genes. MDR K. pneumoniae is important in human and veterinary medicine because it causes many types of infections. Clonal propagation of virulent or MDR genotypes such as K. pneumoniae ST307 is a global concern. This report of ST307 isolation from a urine sample in a domestic feline is the first in Brazil.

Tài liệu tham khảo

Zivanorvic V, Bukarica LG, Scepanovic R et al (2017) Differences in antimicrobial consumption, prescribing, and isolation rate of multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii on surgical and medical wards. PLoS One 12(5):e0175689. https://doi.org/10.1371/journal.pone.0175689 Silva KC, Lincopan N (2012) Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. J Bras Patol Med Lab 48(2):91–99. https://doi.org/10.1590/S1676-24442012000200004 Tian L, Tan R, Chen Y et al (2016) Epidemiology of Klebsiella pneumoniae bloodstream infections in a teaching hospital: factors related to the carbapenem resistance and patient mortality. Antimicrob Resist Infect Control 5(1):48. https://doi.org/10.1186/s13756-016-0145-0 Lee HS, Loh YX, Lee JJ, Liu CS, Chu C (2015) Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. J Microbiol Immunol Inf 48(6):647–654. https://doi.org/10.1016/j.jmii.2014.04.009 Krapp F, Ozer EA, Qi C et al (2018) Case report of an extensively drug-resistant Klebsiella pneumoniae infection with genomic characterization of the strain and review of similar cases in the United States. Open Forum Infect Dis 5(5):074. https://doi.org/10.1093/ofid/ofy074 Interagency Coordination Group on Antimicrobial Resistance (2019) Report to the Secretary-General of the United Nations. IACG, Geneva. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/. Accessed on 15 Jun 2020 Quinn PJ, Carter ME, Markey BK et al (2013) General procedures in microbiology. Clinical veterinary microbiology, 2nd edn. Mosby, St Louis, p 920 Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:4–493. https://doi.org/10.1093/ajcp/45.4_ts.493 BrCAST - Brazilian Committee on Antimicrobial Susceptibility Testing (BrCAST/EUCAST). (2020) Tabelas de pontos de corte para interpretação de CIMs e diâmetros de halos – Version in Portuguese of the EUSCAST Breakpoint tables for interpretation of MICs and zone diameters. http://brcast.org.br/documentos/. Accessed 04 Oct 2020 CLSI. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100 (2018) 28th ed. Clinical and Laboratory Standards Institute, Wayne, PA CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. CLSI supplement VET01S (2020). 5th edn. Wayne; Clinical and Laboratory Standards Instituto. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x Sambrook J, Russel DW (2004) Molecular cloning: a laboratory manual, vol 5, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 65–5.67 Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 125–175 Turner S, Pryer KM, Miao VPW et al (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46(4):327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612 Brisse S, Fevre C, Passet V et al (2009) Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One 4:3–e4982. https://doi.org/10.1371/journal.pone.0004982 Lafeuille E, Decré D, Mahjoub-Messai F et al (2013) OXA-48 carbapenemase-producing Klebsiella pneumoniae isolated from Libyan patients. Microb Drug Resist 19(6):491–497. https://doi.org/10.1089/mdr.2012.0219 Regue M, Hita B, Pique N et al (2004) A gene uge, is essential for Klebsiella pneumoniae virulence. Infect Immun 72(1):54–61. https://doi.org/10.1128/IAI.72.1.54-61.2004 Liu YY, Wang Y, Walsh TR, Yi LX et al (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Inf Dis 16(2):161–168. https://doi.org/10.1016/S1473-3099(15)00424-7 Diancourt L, Passet V, Verhoef J, Grimont PAD, Brisse S (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43(8):4178–4182. https://doi.org/10.1128/JCM.43.8.4178-4182 Nuccio SP, Bäumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71:551–575. https://doi.org/10.1128/MMBR.00014-07 Villa L, Feudi C, Fortini D, Brisse S, Passet V, Bonura C, Endimiani A, Mammina C, Ocampo AM, Jimenez JN, Doumith M, Woodford N, Hopkins K, Carattoli A (2017) Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 3:4. https://doi.org/10.1099/mgen.0.000110 Bezerra WGA, Horn RH, Silva ING et al (2017) Antibióticos no setor avícola: uma revisão sobre a resistência microbiana. Arch Zootech 2017(66):301–307. https://doi.org/10.21071/az.v66i254.2335 Marques C, Menezes J, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, Telo Gama L, Pomba C (2018) Klebsiella pneumoniae causing urinary tract infections in companion animals and humans: population structure, antimicrobial resistance and virulence genes. J Antimicrob Chemother 74(3):594–602. https://doi.org/10.1093/jac/dky499 Davis GS, Waits K, Nordstrom L, Weaver B, Aziz M, Gauld L, Grande H, Bigler R, Horwinski J, Porter S, Stegger M, Johnson JR, Liu CM, Price LB (2015) Intermingled Klebsiella pneumoniae populations between retail meats and human urinary tract infections. Clin Infect Dis 61(6):892–899. https://doi.org/10.1093/cid/civ428 Marques C, Belas A, Aboim C, Cavaco-Silva P, Trigueiro G, Gama LT, Pomba C (2019) Evidence of sharing of Klebsiella pneumoniae strains between healthy companion animals and cohabiting humans. J Clin Microbiol 57(6):e01537–e01518. https://doi.org/10.1128/JCM.01537-18 Chew KL, La MV, Lin RT et al (2017) Colistin and polymyxin B susceptibility testing for carbapenem-resistant and mcr-positive Enterobacteriaceae: comparison of Sensititre, MicroScan, Vitek 2, and Etest with broth microdilution. J Clin Microbiol 55(9):2609–2616. https://doi.org/10.1128/JCM.00268-17 Cheong HS, Kim SY, Wi YM et al (2019) Colistin heteroresistance in Klebsiella Pneumoniae isolates and diverse mutations of PmrAB and PhoPQ in resistant subpopulations. J Clin Med 8(9):1444. https://doi.org/10.3390/jcm8091444 Morales-León F, Lima CA, González-Rocha G et al (2020) Colistin heteroresistance among extended spectrum β-lactamases-producing Klebsiella pneumoniae. Microorganisms 8(9):1279. https://doi.org/10.3390/microorganisms8091279 Yoon EJ, Kim JO, Kim D, Lee H, Yang JW, Lee KJ, Jeong SH (2018) Klebsiella pneumoniae carbapenemase producers in South Korea between 2013 and 2015. Front Microbiol 9:56. https://doi.org/10.3389/fmicb.2018.00056 Harada K, Shimizu T, Mukai Y et al (2016) Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front Microbiol 7:1021. https://doi.org/10.1093/jac/dku217 Sartori L, Sellera FP, Moura Q, Cardoso B, Cerdeira L, Lincopan N (2019) Multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae ST307 producing urinary tract infection in a dog in Brazil. J Glob Antimicrob Resist 19:96–97. https://doi.org/10.1016/j.jgar.2019.09.003 Wyres KL, Wick RR, Judd LM et al (2019) Dinâmica evolutiva distinta da transferência horizontal de genes em clones virulentos e resistentes a drogas de Klebsiella pneumoniae . PLoS Genet 15 (4): e1008114. https://doi.org/10.1371/journal.pgen.1008114 Schaufler K, Nowak K, Düx A et al (2018) K. pneumoniae ST307 e E. coli ST38 produtoras de ESBL clinicamente relevantes em uma população de ratos urbanos da África Ocidental. Frontiers in. Microbiology 9: 150. https://doi.org/10.3389/fmicb.2018.00150 Ewers C, Stamm I, Pfeifer Y et al (2014) Espalhamento clonal de ST15 -CTX-M-15 Klebsiella pneumoniae altamente bem-sucedido em animais de companhia e cavalos. J Antimicrob Chemother 69 (10): 2676–2680. https://doi.org/10.1093/jac/dku217