Multichannel deconvolution with long range dependence: Upper bounds on the L p -risk ( 1 ≤ p < ∞ )
Tài liệu tham khảo
Wang, 1996, Function estimation via wavelet shrinkage for long-memory data, Ann. Statist., 24, 466, 10.1214/aos/1032894449
Wang, 1997, Minimax estimation via wavelets for indirect long-memory data, J. Statist. Plann. Inference, 64, 45, 10.1016/S0378-3758(96)00205-4
De Canditiis, 2006, Simultaneous wavelet deconvolution in periodic setting, Scand. J. Stat., 33, 293, 10.1111/j.1467-9469.2006.00463.x
Pensky, 2009, Functional deconvolution in a periodic setting: uniform case, Ann. Statist., 37, 73, 10.1214/07-AOS552
Pensky, 2010, On convergence rates equivalency and sampling strategies in functional deconvolution models, Ann. Statist., 38, 1793, 10.1214/09-AOS767
Pensky, 2011, Multichannel boxcar deconvolution with growing number of channels, Electron. J. Stat., 5, 53, 10.1214/11-EJS597
Casey, 1994, Systems of convolution equations, deconvolution, Shannon sampling, and the wavelet and Gabor transforms, SIAM Rev., 36, 537, 10.1137/1036140
De Canditiis, 2004, Discussion on the meeting on ‘statistical approaches to inverse problems’, J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 627, 10.1111/j.1467-9868.2004.2060d.x
Beran, 2013
Raimondo, 2007, The waved transform in r: performs fast translation-invariant wavelet deconvolution, J. Stat. Softw., 21, 1, 10.18637/jss.v021.i02
Donoho, 1995, Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition, Appl. Comput. Harmon. Anal., 2, 101, 10.1006/acha.1995.1008
Abramovich, 1998, Wavelet decomposition approaches to statistical inverse problems, Biometrika, 85, 115, 10.1093/biomet/85.1.115
Kalifa, 2003, Thresholding estimators for linear inverse problems and deconvolutions, Ann. Statist., 31, 58, 10.1214/aos/1046294458
Johnstone, 2004, Wavelet deconvolution in a periodic setting, J. R. Stat. Soc. Ser. B Stat. Methodol., 66, 547, 10.1111/j.1467-9868.2004.02056.x
Donoho, 2004, Translation invariant deconvolution in a periodic setting, Int. J. Wavelets Multiresolut. Inf. Process., 2, 415, 10.1142/S0219691304000640
Johnstone, 2004, Periodic boxcar deconvolution and Diophantine approximation, Ann. Statist., 32, 1781, 10.1214/009053604000000391
Neelamani, 2004, ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems, IEEE Trans. Signal Process., 52, 418, 10.1109/TSP.2003.821103
Kerkyacharian, 2007, Adaptive boxcar deconvolution on full Lebesgue measure sets, Statist. Sinica, 17, 317
Kulik, 2009, Lp-wavelet regression with correlated errors and inverse problems, Statist. Sinica, 19, 1479
Wishart, 2013, Wavelet deconvolution in a periodic setting with long-range dependent errors, J. Statist. Plann. Inference, 143, 867, 10.1016/j.jspi.2012.12.001
Benhaddou, 2014, Multichannel deconvolution with long-range dependence: a minimax study, J. Statist. Plann. Inference, 148, 1, 10.1016/j.jspi.2013.12.008
Kulik, 2008, Nonparametric deconvolution problem for dependent sequences, Electron. J. Stat., 2, 722, 10.1214/07-EJS154
Park, 1997, Deconvolution of long-pulse lidar signals with matrix formulation, Appl. Optim., 36, 5158, 10.1364/AO.36.005158
Harsdorf, 2000, Stable deconvolution of noisy lidar signals, 16
Kolaczyk, 1994
Meyer, 1992, Wavelets and Operators, vol. 37
Mallat, 1999
Schmidt, 1980, Diophantine Approximation, vol. 785
Cavalier, 2007, Wavelet deconvolution with noisy eigenvalues, IEEE Trans. Signal Process., 55, 2414, 10.1109/TSP.2007.893754
Donoho, 1995, Wavelet shrinkage: asymptopia?, J. R. Stat. Soc. Ser. B Stat. Methodol., 57, 301
Kerkyacharian, 2000, Thresholding algorithms, maxisets and well-concentrated bases, TEST, 9, 283, 10.1007/BF02595738
Petsa, 2009, Minimax convergence rates under the Lp-risk in the functional deconvolution model, Statist. Probab. Lett., 79, 1568, 10.1016/j.spl.2009.03.028