Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Quyết định đa thuộc tính bằng các quy luật hoạt động logarithmic trong môi trường neutrosophic khoảng
Tóm tắt
Tập neutrosophic là sự tổng quát của tập fuzzy và tập fuzzy trực giác nhằm giải quyết thông tin không đầy đủ, không chắc chắn và không chính xác trong các vấn đề thực tế. Trong bài viết này, chúng tôi đã định nghĩa các quy luật hoạt động logarithmic mới cho các số neutrosophic khoảng. Sau đó, các thuộc tính đại số khác nhau của các quy luật hoạt động được đề xuất đã được nghiên cứu chi tiết. Hơn nữa, chúng tôi đã phát triển nhiều phép toán tổng hợp trung bình trọng số và hình học trọng số mong muốn, mà cuối cùng được sử dụng để giải quyết các vấn đề quyết định đa thuộc tính. Kỹ thuật quyết định đa thuộc tính đã được minh họa thông qua một ví dụ số và ảnh hưởng của toán tử logarithmic đối với các số neutrosophic khoảng cùng với việc lựa chọn cơ số logarithm ($\delta$) đã được giải thích từ góc độ thực tiễn. Cuối cùng, để minh chứng cho kỹ thuật quyết định đa thuộc tính được đề xuất, chúng tôi đã thực hiện phân tích nhạy cảm đối với các thuộc tính có ảnh hưởng cơ bản trong lĩnh vực nghiên cứu. Cuối cùng, một nghiên cứu so sánh đã được thực hiện để so sánh phương pháp của chúng tôi với các phương pháp hiện có về tính khả thi và hợp lý.
Từ khóa
#neutrosophic sets #fuzzy sets #decision-making #logarithmic operational laws #multiattribute decision-makingTài liệu tham khảo
Abbasbandy S, Hajjari T (2009) A new approach for ranking of trapezoidal fuzzy numbers. Comput Math Appl 57(3):413–419
Abdel-Basset M, Mohamed M, Hussien AN, Sangaiah AK (2018) A novel group decision-making model based on triangular neutrosophic numbers. Soft Comput 22(20):6629–6643
Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96
Biswas P, Pramanik S, Giri BC (2014) A new methodology for neutrosophic multi-attribute decision making with unknown weight information. Neutrosophic Sets Syst 3:42–52
Biswas P, Pramanik S, Giri BC (2016) Topsis method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput Appl 27(3):727–737
Broumi S, Smarandache F (2013) Several similarity measures of neutrosophic sets. Infinite Study
Chakraborty A, Mondal SP, Ahmadian A, Senu N, Alam S, Salahshour S (2018) Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications. Symmetry 10(8):327
Chakraborty A, Broumi S, Singh PK (2019a) Some properties of pentagonal neutrosophic numbers and its applications in transportation problem environment. Infinite Study
Chakraborty A, Mondal SP, Alam S, Ahmadian A, Senu N, De D, Salahshour S (2019) Disjunctive representation of triangular bipolar neutrosophic numbers, de-bipolarization technique and application in multi-criteria decision-making problems. Symmetry 11(7):932
Chakraborty A, Mondal SP, Alam S, Ahmadian A, Senu N, De D, Salahshour S (2019) The pentagonal fuzzy number: its different representations, properties, ranking, defuzzification and application in game problems. Symmetry 11(2):248
Chakraborty A, Banik B, Mondal SP, Alam S (2020) Arithmetic and geometric operators of pentagonal neutrosophic number and its application in mobile communication service based mcgdm problem. Neutrosophic Sets Syst 32:61–79
Chakraborty A, Maity S, Jain S, Mondal SP, Alam S (2021) Hexagonal fuzzy number and its distinctive representation, ranking, defuzzification technique and application in production inventory management problem. Granul Comput 6(3):507–521
Chakraborty A, Mondal SP, Mahata A, Alam S (2021) Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem. RAIRO-Oper Res 55:S97–S118
Chen SM (1997) Interval-valued fuzzy hypergraph and fuzzy partition. IEEE Trans Syst Man Cybern Part B (Cybern) 27(4):725–733
Chen SM, Hsiao WH (2000) Bidirectional approximate reasoning for rule-based systems using interval-valued fuzzy sets. Fuzzy Sets Syst 113(2):185–203
Chen SM, Hsiao WH, Jong WT (1997) Bidirectional approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst 91(3):339–353
Chen SM, Chang YC, Pan JS (2012) Fuzzy rules interpolation for sparse fuzzy rule-based systems based on interval type-2 gaussian fuzzy sets and genetic algorithms. IEEE Trans Fuzzy Syst 21(3):412–425
Chi P, Liu P (2013) An extended topsis method for the multiple attribute decision making problems based on interval neutrosophic set. Neutrosophic Sets Syst 1(1):63–70
Chiao KP (2016) The multi-criteria group decision making methodology using type 2 fuzzy linguistic judgments. Appl Soft Comput 49:189–211
Fahmi A, Amin F, Ullah H (2021) Multiple attribute group decision making based on weighted aggregation operators of triangular neutrosophic cubic fuzzy numbers. Granul Comput 6(2):421–433
Garg H (2019) New logarithmic operational laws and their aggregation operators for pythagorean fuzzy set and their applications. Int J Intell Syst 34(1):82–106
Garg H, Nancy A (2018) Some hybrid weighted aggregation operators under neutrosophic set environment and their applications to multicriteria decision-making. Appl Intell 48(12):4871–4888
Garg H et al (2018) New logarithmic operational laws and their applications to multiattribute decision making for single-valued neutrosophic numbers. Cogn Syst Res 52:931–946
Haque TS, Chakraborty A, Mondal SP, Alam S (2020) Approach to solve multi-criteria group decision-making problems by exponential operational law in generalised spherical fuzzy environment. CAAI Trans Intell Technol 5(2):106–114
Haque TS, Chakraborty A, Mondal SP, Alam S (2021) A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with mcgdm skill to determine most harmful virus. Appl Intell 2021:1–20
Li Z, Wei F (2017) The logarithmic operational laws of intuitionistic fuzzy sets and intuitionistic fuzzy numbers. J Intell Fuzzy Syst 33(6):3241–3253
Liu F, Yuan XH (2007) Fuzzy number intuitionistic fuzzy set. Fuzzy Syst Math 21(1):88–91
Liu P, Wang Y (2014) Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted bonferroni mean. Neural Comput Appl 25(7):2001–2010
Liu P, Chu Y, Li Y, Chen Y (2014) Some generalized neutrosophic number hamacher aggregation operators and their application to group decision making. Int J Fuzzy Syst 16:2
Lu Z, Ye J (2017) Exponential operations and an aggregation method for single-valued neutrosophic numbers in decision making. Information 8(2):62
Maity S, Chakraborty A, De SK, Mondal SP, Alam S (2020) A comprehensive study of a backlogging eoq model with nonlinear heptagonal dense fuzzy environment. RAIRO-Oper Res 54(1):267–286
Majumdar P, Samanta SK (2014) On similarity and entropy of neutrosophic sets. J Intell Fuzzy Syst 26(3):1245–1252
Nabeeh NA, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A (2019) Neutrosophic multi-criteria decision making approach for iot-based enterprises. IEEE Access 7:59559–59574
Nancy Garg H (2016) Novel single-valued neutrosophic decision making operators under frank norm operations and its application. Int J Uncertain Quantif 6(4):361–375
Jj Peng, Jq Wang, Hy Zhang, Chen Xh (2014) An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl Soft Comput 25:336–346
Jj Peng, Jq Wang, Wang J, Hy Zhang, Chen Xh (2016) Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int J Syst Sci 47(10):2342–2358
Şahin R (2017) Cross-entropy measure on interval neutrosophic sets and its applications in multicriteria decision making. Neural Comput Appl 28(5):1177–1187
Smarandache F (1999) A unifying field in logics. neutrosophy: Neutrosophic probability, set and logic
Smarandache F (2016) Subtraction and division of neutrosophic numbers. Crit Rev 13:103–110
Tan R, Zhang W, Chen S (2018) Exponential aggregation operator of interval neutrosophic numbers and its application in typhoon disaster evaluation. Symmetry 10(6):196
Turksen IB (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst 20(2):191–210
Wang H, Smarandache F, Sunderraman R, Zhang YQ (2005) interval neutrosophic sets and logic: theory and applications in computing: theory and applications in computing, vol 5. Infinite Study
Wang H, Smarandache F, Zhang Y, Sunderraman R (2010) Single valued neutrosophic sets. Multisp Multistruct 4:410–413
Wibowo S, Grandhi S, Deng H (2016) Multicriteria group decision making for selecting human resources management information systems projects. In: 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), IEEE, pp 1405–1410
Xu ZS (2001) Algorithm for priority of fuzzy complementary judgment matrix. J Syst Eng 16(4):311–314
Ye J (2013) Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int J Gen Syst 42(4):386–394
Ye J (2014) A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J Intell Fuzzy Syst 26(5):2459–2466
Ye J (2014) Prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application to multicriteria decision-making. Neural Comput Appl 25(6):1447–1454
Ye J (2015) Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. J Intell Fuzzy Syst 28(3):1307–1317
Ye J (2016) Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. Springerplus 5(1):1–18
Ye J (2016) Interval neutrosophic multiple attribute decision-making method with credibility information. Int J Fuzzy Syst 18(5):914–923
Ye J, Türkarslan E, Ünver M, Olgun M (2021) Algebraic and einstein weighted operators of neutrosophic enthalpy values for multi-criteria decision making in neutrosophic multi-valued set settings. Granul Comput 2021:1–9
Yen KK, Ghoshray S, Roig G (1999) A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets Syst 106(2):167–177
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Zhang HY, Wang JQ, Chen XH (2014) Interval neutrosophic sets and their application in multicriteria decision making problems. Sci World J 2014:5