Multi-walled carbon nanotubes induce human microvascular endothelial cellular effects in an alveolar-capillary co-culture with small airway epithelial cells

Springer Science and Business Media LLC - Tập 10 - Trang 1-14 - 2013
Brandi N Snyder-Talkington1, Diane Schwegler-Berry1, Vincent Castranova1, Yong Qian1, Nancy L Guo2
1Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, USA
2Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, USA

Tóm tắt

Nanotechnology, particularly the use of multi-walled carbon nanotubes (MWCNT), is a rapidly growing discipline with implications for advancement in a variety of fields. A major route of exposure to MWCNT during both occupational and environmental contact is inhalation. While many studies showed adverse effects to the vascular endothelium upon MWCNT exposure, in vitro results often do not correlate with in vivo effects. This study aimed to determine if an alveolar-capillary co-culture model could determine changes in the vascular endothelium after epithelial exposure to MWCNT. A co-culture system in which both human small airway epithelial cells and human microvascular endothelial cells were separated by a Transwell membrane so as to resemble an alveolar-capillary interaction was used. Following exposure of the epithelial layer to MWCNT, the effects to the endothelial barrier were determined. Exposure of the epithelial layer to MWCNT induced multiple changes in the endothelial cell barrier, including an increase in reactive oxygen species, actin rearrangement, loss of VE-cadherin at the cell surface, and an increase in endothelial angiogenic ability. Overall increases in secreted VEGFA, sICAM-1, and sVCAM-1 protein levels, as well as increases in intracellular phospho-NF-κB, phospho-Stat3, and phospho-p38 MAPK, were also noted in HMVEC after epithelial exposure. The co-culture system identified that alveolar-capillary exposure to MWCNT induced multiple changes to the underlying endothelium, potentially through cell signaling mediators derived from MWCNT-exposed epithelial cells. Therefore, the co-culture system appears to be a relevant in vitro method to study the pulmonary toxicity of MWCNT.

Tài liệu tham khảo

Castranova V: Overview of current toxicological knowledge of engineered nanoparticles. J Occup Environ Med/Am Coll Occup Environ Med 2011, 53: S14-S17. Roco MC: Science and technology integration for increased human potential and societal outcomes. Ann N Y Acad Sci 2004, 1013: 1–16. 10.1196/annals.1305.001 Scholars WWIC: Consumer Products: An Inventory of Nanotechnology-based Consumer Products Currenly on the Market. 2012, Accessed 08/23/12 http://www.nanotechproject.org Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311: 622–627. 10.1126/science.1114397 Maynard AD, Kuempel ED: Airborne nanostructured particles and occupational health. J Nanopart Res 2005, 7: 587–614. 10.1007/s11051-005-6770-9 Ajayan PM: Nanotubes from carbon. Chem Rev 1999, 99: 1787–1800. 10.1021/cr970102g Iijima S: Helical microtubules of graphitic carbon. Nature 1991, 354: 56–58. 10.1038/354056a0 Yakobson BI, Smalley RE: Fullerene nanotubes: C 1,000,000 and Beyond: Some unusual new molecules - long, hollow fibers with tantalizing electronic and mechanical properties - have joined diamonds and graphite in the carbon family. Am Scientist 1997, 85: 324–337. Donaldson K, Murphy FA, Duffin R, Poland CA: Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 2010, 7: 5. 10.1186/1743-8977-7-5 Donaldson K, Poland CA: Inhaled nanoparticles and lung cancer - what we can learn from conventional particle toxicology. Swiss Med Wkly 2012, 142: w13547. Pacurari M, Castranova V, Vallyathan V: Single- and multi-wall carbon nanotubes versus asbestos: are the carbon nanotubes a new health risk to humans? J Toxicol Environ Health A 2010, 73: 378–395. 10.1080/15287390903486527 Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, et al.: Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 2010, 269: 136–147. 10.1016/j.tox.2009.10.017 Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW: Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol 2011, 8: 21. 10.1186/1743-8977-8-21 Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, Battelli L, Wu N, Sriram K, Leonard S, et al.: Acute pulmonary dose-responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 2012. Sep 13. [Epub ahead of print] Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005, 207: 221–231. 10.1016/j.taap.2005.01.008 Snyder-Talkington BN, Qian Y, Castranova V, Guo NL: New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. J Toxicol Environ Health B Crit Rev 2012, 15: 468–492. 10.1080/10937404.2012.736856 He X, Young SH, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q: Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-kappaB signaling, and promoting fibroblast-to-myofibroblast transformation. Chem Res Toxicol 2011, 24: 2237–2248. 10.1021/tx200351d Ye SF, Wu YH, Hou ZQ, Zhang QQ: ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 2009, 379: 643–648. 10.1016/j.bbrc.2008.12.137 Pacurari M, Qian Y, Fu W, Schwegler-Berry D, Ding M, Castranova V, Guo NL: Cell permeability, migration, and reactive oxygen species induced by multiwalled carbon nanotubes in human microvascular endothelial cells. J Toxicol Environ Health A 2012, 75: 129–147. Srivastava RK, Pant AB, Kashyap MP, Kumar V, Lohani M, Jonas L, Rahman Q: Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology 2011, 5: 195–207. 10.3109/17435390.2010.503944 Sargent LM, Reynolds SH, Castranova V: Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. Nanotoxicology 2010, 4: 396–408. 10.3109/17435390.2010.500444 Warheit DB, Sayes CM, Reed KL: Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 2009, 43: 7939–7945. 10.1021/es901453p Seagrave J, Mauderly JL, Seilkop SK: In vitro relative toxicity screening of combined particulate and semivolatile organic fractions of gasoline and diesel engine emissions. J Toxicol Environ Health A 2003, 66: 1113–1132. 10.1080/15287390390213881 Sayes CM, Reed KL, Warheit DB: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 2007, 97: 163–180. 10.1093/toxsci/kfm018 Stokstad E: Putting chemicals on a path to better risk assessment. Science 2009, 325: 694–695. 10.1126/science.325_694 Hartung T: Toxicology for the twenty-first century. Nature 2009, 460: 208–212. 10.1038/460208a Collins FS, Gray GM, Bucher JR: Toxicology, Transforming environmental health protection. Science 2008, 319: 906–907. 10.1126/science.1154619 Brandenberger C, Rothen-Rutishauser B, Muhlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG: Effects and uptake of gold nanoparticles deposited at the air-liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol 2010, 242: 56–65. 10.1016/j.taap.2009.09.014 Hermanns MI, Kasper J, Dubruel P, Pohl C, Uboldi C, Vermeersch V, Fuchs S, Unger RE, Kirkpatrick CJ: An impaired alveolar-capillary barrier in vitro: effect of proinflammatory cytokines and consequences on nanocarrier interaction. J R Soc, Interface /R Soc 2010,7(Suppl 1):S41-S54. Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ: Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest; J Tech Meth Pathol 2004, 84: 736–752. 10.1038/labinvest.3700081 Kasper J, Hermanns MI, Bantz C, Maskos M, Stauber R, Pohl C, Unger RE, Kirkpatrick JC: Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures. Part Fibre Toxicol 2011, 8: 6. 10.1186/1743-8977-8-6 Klein SG, Hennen J, Serchi T, Blomeke B, Gutleb AC: Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol In Vitro: Int J Published Assoc BIBRA 2011, 25: 1516–1534. 10.1016/j.tiv.2011.09.006 Muller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B: Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc, Interface /R Soc 2010,7(Suppl 1):S27-S40. Rothen-Rutishauser B, Blank F, Muhlfeld C, Gehr P: In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 2008, 4: 1075–1089. 10.1517/17425255.4.8.1075 Wottrich R, Diabate S, Krug HF: Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int J Hyg Environ Health 2004, 207: 353–361. 10.1078/1438-4639-00300 Napierska D, Quarck R, Thomassen LC, Lison D, Martens JA, Delcroix M, Nemery B, Hoet PH: Amorphous silica nanoparticles promote monocyte adhesion to human endothelial cells: size-dependent effect. Small 2013, 9: 430–438. 10.1002/smll.201201033 Dudek SM, Garcia JG: Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001, 91: 1487–1500. Shi W, Xu J, Warburton D: Development, repair and fibrosis: what is common and why it matters. Respirology 2009, 14: 656–665. 10.1111/j.1440-1843.2009.01565.x Strieter RM: What differentiates normal lung repair and fibrosis? Inflammation, resolution of repair, and fibrosis. Proc Am Thorac Soc 2008, 5: 305–310. 10.1513/pats.200710-160DR Strieter RM, Mehrad B: New mechanisms of pulmonary fibrosis. Chest 2009, 136: 1364–1370. 10.1378/chest.09-0510 Snyder-Talkington BN, Pacurari M, Dong C, Leonard S, Schwegler-Berry D, Castranova V, Qian Y, Guo NL: Systematic analysis of multi-walled carbon nanotube-induced cellular signaling and gene expression in human small airway epithelial cells. Toxicol Sci 2013, 133: 79–89. 10.1093/toxsci/kft019 Folkman J: Angiogenesis: an organizing principle for drug discovery? Nature reviews Drug discovery 2007, 6: 273–286. 10.1038/nrd2115 Hancock JT, Desikan R, Neill SJ: Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans 2001, 29: 345–350. 10.1042/BST0290345 Roberts RA, Smith RA, Safe S, Szabo C, Tjalkens RB, Robertson FM: Toxicological and pathophysiological roles of reactive oxygen and nitrogen species. Toxicology 2010, 276: 85–94. 10.1016/j.tox.2010.07.009 Tabima DM, Frizzell S, Gladwin MT: Reactive oxygen and nitrogen species in pulmonary hypertension. Free Radic Biol Med 2012, 52: 1970–1986. 10.1016/j.freeradbiomed.2012.02.041 Stapleton PA, Minarchick VC, Cumpston AM, McKinney W, Chen BT, Sager TM, Frazer DG, Mercer RR, Scabilloni J, Andrew ME, et al.: Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 2012, 13: 13781–13803. 10.3390/ijms131113781 Hirase T, Node K: Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol 2012, 302: H499-H505. 10.1152/ajpheart.00325.2011 Csortos C, Kolosova I, Verin AD: Regulation of vascular endothelial cell barrier function and cytoskeleton structure by protein phosphatases of the PPP family. Am J Physiol Lung Cell Mol Physiol 2007, 293: L843-L854. 10.1152/ajplung.00120.2007 Vandenbroucke E, Mehta D, Minshall R, Malik AB: Regulation of endothelial junctional permeability. Ann N Y Acad Sci 2008, 1123: 134–145. 10.1196/annals.1420.016 Lampugnani MG, Resnati M, Raiteri M, Pigott R, Pisacane A, Houen G, Ruco LP, Dejana E: A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 1992, 118: 1511–1522. 10.1083/jcb.118.6.1511 Harris ES, Nelson WJ: VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 2010, 22: 651–658. 10.1016/j.ceb.2010.07.006 Tuder RM, Yun JH: Vascular endothelial growth factor of the lung: friend or foe. Curr Opin Pharmacol 2008, 8: 255–260. 10.1016/j.coph.2008.03.003 Weis SM, Cheresh DA: Pathophysiological consequences of VEGF-induced vascular permeability. Nature 2005, 437: 497–504. 10.1038/nature03987 Gavard J, Gutkind JS: VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 2006, 8: 1223–1234. 10.1038/ncb1486 Muller WA: Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 2011, 6: 323–344. 10.1146/annurev-pathol-011110-130224 Lawson C, Wolf S: ICAM-1 signaling in endothelial cells. Pharmacological reports: PR 2009, 61: 22–32. Chang JF, Hsu SP, Pai MF, Yang JY, Chen HY, Wu HY, Peng YS: High soluble vascular cell adhesion molecule-1 concentrations predict long-term mortality in hemodialysis patients. Int Urol Nephrol 2013. Apr 6. [Epub ahead of print] Gao H, Ward PA: STAT3 and suppressor of cytokine signaling 3: potential targets in lung inflammatory responses. Expert Opin Ther Targets 2007, 11: 869–880. 10.1517/14728222.11.7.869 Rahman A, Fazal F: Blocking NF-kappaB: an inflammatory issue. Proc Am Thorac Soc 2011, 8: 497–503. 10.1513/pats.201101-009MW Moodley YP, Misso NL, Scaffidi AK, Fogel-Petrovic M, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA: Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol 2003, 29: 490–498. 10.1165/rcmb.2002-0262OC Hoefen RJ, Berk BC: The role of MAP kinases in endothelial activation. Vascul Pharmacol 2002, 38: 271–273. 10.1016/S1537-1891(02)00251-3 Pietersma A, Tilly BC, Gaestel N, DeJong N, Lee JC, Koster JF, Sluiter W: P38 mitogen activated protein kinase regulates endothelial VCAM-1 expression at the post-transcriptional level. Biochem Biophys Res Commun 1997, 230: 44–48. 10.1006/bbrc.1996.5886 Wang Q, Doerschuk CM: The p38 mitogen-activated protein kinase mediates cytoskeletal remodeling in pulmonary microvascular endothelial cells upon intracellular adhesion molecule-1 ligation. J Immunol 2001, 166: 6877–6884. Porter D, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V: A biocompatible medium for nanoparticle dispersion. Nanotoxicology 2008, 2: 144–154. 10.1080/17435390802318349 Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, Castranova V, Porter DW: Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 2010, 7: 28. 10.1186/1743-8977-7-28 Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ: Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 2008, 20: 741–749. 10.1080/08958370801942238 Piao CQ, Liu L, Zhao YL, Balajee AS, Suzuki M, Hei TK: Immortalization of human small airway epithelial cells by ectopic expression of telomerase. Carcinogenesis 2005, 26: 725–731. 10.1093/carcin/bgi016 Shao R, Guo X: Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a model for the study of in vitro angiogenesis. Biochem Biophys Res Commun 2004, 321: 788–794. 10.1016/j.bbrc.2004.07.033 Qian Y, Liu KJ, Chen Y, Flynn DC, Castranova V, Shi X: Cdc42 regulates arsenic-induced NADPH oxidase activation and cell migration through actin filament reorganization. J Biol Chem 2005, 280: 3875–3884.