Multi-view document clustering via ensemble method

Syed Fawad Hussain1, Muhammad Mushtaq1, Zahid Halim1
1Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aggarwal, C., Hinneburg, A., Keim, D. (2001). On the surprising behavior of distance metrics in high dimensional space. In International conference on database theory (ICDT) (pp. 420–434).

Ayad, H.G., & Kamel, M.S. (2008). Cumulative voting consensus method for partitions with variable number of clusters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(1), 160–173.

Bickel, S., & Scheffer, T. (2004). Multi-view clustering. In Fourth IEEE international conference on data mining, 2004. ICDM ’04 (pp. 19–26).

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on computational learning theory (pp. 92–100). New York.

Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K. (2009). Multi-view clustering via canonical correlation analysis. In Proceedings of the 26th annual international conference on machine learning (pp. 129–136). New York.

De Carvalho, F.D.A., Lechevallier, Y., De Melo, F.M. (2012). Partitioning hard clustering algorithms based on multiple dissimilarity matrices. Pattern Recognition, 45(1), 447–464.

de Sa, V.R. (2005). Spectral clustering with two views. In ICML workshop on learning with multiple views.

Fred, A.L., & Jain, A.K. (2002). Data clustering using evidence accumulation. In Proceedings of the 16th international conference on pattern recognition, 2002. (vol. 4, pp. 276–280).

Frings, O., Alexeyenko, A., Sonnhammer, E.L. (2013). MGclus: network clustering employing shared neighbors. Molecular BioSystems.

Hu, B.-G., & Wang, Y. (2008). Evaluation criteria based on mutual information for classifications including rejected class. Acta Automatica Sinica, 34(11), 1396–1403.

Jain, A.K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.

Janssens, F., Glänzel, W., De Moor, B. (2007). Dynamic hybrid clustering of bioinformatics by incorporating text mining and citation analysis. In Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 360–369). New York.

Kontschieder, P., Donoser, M., Bischof, H. (2009). Improving affinity matrices by modified mutual kNN-Graphs. In 33rd workshop of the Austrian association for pattern recognition (AAPR/OAGM).

Kumar, A., & Daumé, H. III (2011). A co-training approach for multi-view spectral clustering. In International conference on machine learning.

Lan, M., Tan, C.L., Su, J., Lu, Y. (2009). Supervised and traditional term weighting methods for automatic text categorization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(4), 721– 735.

Liu, X., Yu, S., Moreau, Y., De Moor, B., Glänzel, W., Janssens, F. (2009). Hybrid clustering of text mining and bibliometrics applied to journal sets. In Proceedings of the SIAM international data mining conference (SDM).

Long, B., Wu, X., Zhang, Z.M., Yu, P.S. (2006). Unsupervised learning on k-partite graphs. In Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 317–326).

Long, B., Yu Phillips, S., Zhang, Z. (2008). A general model for multiple view unsupervised learning. In Proceedings of the SIAM international data mining conference (SDM).

Mirzaei, A., Rahmati, M., Ahmadi, M. (2008). A new method for hierarchical clustering combination. Intelligent Data Analysis, 12(6), 549–571.

Mooi, E., & Sarrstedt, M. (2011). A concise guide to market research. Berlin Heidelberg: Springer.

Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T. (2000). Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2–3), 103–134.

Page, L., Brin, S., Motwani, R., Winograd, T. (1999). The PageRank citation ranking: bringing order to the web. Stanford InfoLab.

Pavlidis, P., Cai, J., Weston, J., Noble, W.S. (2002). Learning gene functional classifications from multiple data types. Journal of Computational Biology, 9, 401–411.

Reed, J.W., Jiao, Y., Potok, T.E., Klump, B.A., Elmore, M.T., Hurson, A.R. (2006). TF-ICF: a new term weighting scheme for clustering dynamic data streams. In Proceedings of the 5th international conference on machine learning and applications (pp. 258–263). Washington, DC.

Strehl, A., & Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal Machine Learning Research, 3, 583–617.

Strehl, A., Ghosh, J., Cardie, C. (2002). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.

Tang, W., Lu, Z., Dhillon, I.S. (2009). Clustering with multiple graphs. In Ninth IEEE international conference on data mining, 2009. ICDM ’09 (pp. 1016–1021).

Tang, L., Wang, X., Liu, H. (2010). Community detection in multi-dimensional networks. Technical Report, Defense Technical Information Center. [Available at http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA555924 ].

Varga, R.S., & Nabben, R. (1993). On symmetric ultrametric matrices. In L. Reichel, A. Ruttan, R.S. Varga (Eds.) Numerical linear algebra (pp. 193–199). New York: Walter de Gruyter.

Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

Zheng, L., Li, T., Ding, C. (2010). Hierarchical ensemble clustering. In Proceedings of the 2010 IEEE international conference on data mining (pp. 1199–1204). Washington, DC.