Vi khuẩn khuyến khích tăng trưởng thực vật chịu mặn đa đặc tính giảm thiểu căng thẳng muối và nâng cao sự phát triển của Amaranthus Viridis

Journal of Soil Science and Plant Nutrition - Tập 23 - Trang 1860-1883 - 2023
Margi Patel1, S. S. K. P. Vurukonda2, Ashish Patel1
1Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
2Department of Microbiology, Agri Biotech Foundation, Hyderabad, India

Tóm tắt

Môi trường toàn cầu đang thay đổi không ngừng gây ra các yếu tố stress abiotic, điều này có ảnh hưởng tiêu cực đến sự phát triển và năng suất của thực vật. Trong số các áp lực abiotic, độ mặn của đất là một trở ngại lớn trong việc đáp ứng nhu cầu thực phẩm toàn cầu đồng thời đảm bảo nông nghiệp bền vững. Để giải quyết vấn đề này, nghiên cứu hiện tại đã tìm ra các chế phẩm vi khuẩn đồng sinh đa chức năng từ các môi trường khắc nghiệt có thể phối hợp với nhau để giảm bớt căng thẳng do muối. Để tiền phân lập các vi khuẩn thúc đẩy sự phát triển của thực vật (PGPB), các mẫu đã được thu thập từ cây chịu mặn Suaeda nudiflora tìm thấy trong đất sa mạc có độ mặn. Các mẫu được sàng lọc để xác định đặc điểm hình thái, sinh hóa và phân tử và được kiểm nghiệm trong phòng thí nghiệm dưới điều kiện nhà kính. Các dòng vi khuẩn nội cộng sinh Bacillus safensis (BS) và Bacillus haynesii (BH) có dấu hiệu tăng trưởng cây trồng đáng kể dưới điều kiện in vitro và được kiểm tra thêm trong nhà kính để thúc đẩy sự tăng trưởng của cây con Amaranthus viridis dưới các điều kiện độ mặn (4 ds m−1 và 6 ds m−1). Cả hai dòng vi khuẩn đều có khả năng sản xuất acid gibberellic, acid indole-3-acetic, hydrogen cyanide, amoniac, 1-amino cyclopropane-1-carboxylic acid deaminase, exopolysaccharides, protease, chitinase, amylase, cellulase, và các khoáng chất đã hòa tan như photpho, kẽm, và kali. Dòng BS có khả năng sản xuất siderophore, trong khi dòng BH có khả năng cố định nitơ và sản xuất pectinase. Cả hai dòng đều hiệu quả dưới các điều kiện stress abiotic như độ pH, nhiệt độ, muối và hạn hán. Việc ứng dụng PGPB chịu mặn đa đặc tính là một chiến lược khả thi và thân thiện với môi trường để cải thiện khả năng chịu muối ở thực vật. Các liên minh vi khuẩn được phát hiện có hiệu quả hơn so với việc cấy ghép một chủng đơn lẻ trong việc thúc đẩy sự phát triển của thực vật trong điều kiện độ mặn, và chúng có tiềm năng để phát triển hơn nữa như một sản phẩm chế phẩm sinh học độc đáo.

Từ khóa

#vi khuẩn khuyến khích tăng trưởng thực vật #căng thẳng muối #khả năng chịu mặn #Amaranthus viridis #Bacillus safensis #Bacillus haynesii #hợp tác vi khuẩn.

Tài liệu tham khảo

Abbas R, Rasul S, Aslam K, Baber M, Shahid M, Mubeen F, Naqqash T (2019) Halotolerant PGPR: a hope for cultivation of saline soils. J King Saud Univ Sci 31:1195–1201. https://doi.org/10.1016/j.jksus.2019.02.019 Afridi MS, Amna S, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT (2019) Induction of tolerance to salinity in wheat genotypes by plant growth-promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577. https://doi.org/10.1016/j.plaphy.2019.03.041 Ahmad M, Zahir ZA, Nazli F, Akram F, Arshad M, Khalid M (2013) Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiate L.). Braz J Microbiol 44:1341–1348. https://doi.org/10.1590/s1517-83822013000400045 Akinrinlola R, Yuen G, Drijber R, Adesemoye T (2018) Evaluation of bacillus strains for plant growth promotion and predictability of efficacy by in vitro physiological traits. Int J Microbiol 1–11. https://doi.org/10.1155/2018/5686874 Alenezi FN, Rekik I, Bełka M, Ibrahim AF, Luptakova L, Jaspars M (2016) Strain-level diversity of secondary metabolism in the biocontrol species Aneurinibacillus migulanus. Microbiol Res 182:116–124. https://doi.org/10.1016/j.micres.2015.10.007 Ali S, Charles TC, Glick BR (2014) A melioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167. https://doi.org/10.1016/j.plaphy.2014.04.003 Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1 Arora S, Patel P, Vanza M, Rao G (2014) Isolation and characterization of entophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. Afr J Microbiol Res 8:1779–1788. https://doi.org/10.5897/AJMR2013.5557 Bakker AW, Schipperes B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. - mediated plant growth stimulation. Soil Biol Biochem 19:451–457. https://doi.org/10.1016/0038-0717(87)90037-X Bariya H, Bagtharia S, Patel A (2014) Boron: a promising nutrient for increasing growth and yield of plants, In: Hawkesford MJ, Kopriva S, Kok LJD (ed), nutrient use efficiency in plants, Springer, 153–170 https://doi.org/10.1007/978-3-319-10635-9_6 Bashir A, Sahar N, Nausleen AM, Shumaila B, Lavid A, Saeeda T, Lavid AB, Ibadullah J (2013) Isolation and characterization of cellulolysic nitrogen fixing Azotobacter species from wheat rhizosphere of Khyber Pakhtunkhwa. World Appl Sci J 27:51–60. https://doi.org/10.5829/idosi.wasj.2013.27.01.81120 Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth-promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:347–368. https://doi.org/10.1038/srep34768 Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S, Jan AT (2020) Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.01952 Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. https://doi.org/10.1007/s00253-004-1696-1 Bouyoucos GJ (1962) Hydrometer method improved for making particle size analysis of soil. Agron J 54:465–466. https://doi.org/10.2134/agronj1962.00021962005400050028x Çağlayan P (2021) Determination of important enzymes and antimicrobial resistances of gram-positive haloalkaliphilic bacteria isolated from Salda Lake. J Fish Aquat Sci 38:375–382. https://doi.org/10.12714/egejfas.38.3.14 Cappuccino JC, Sherman N (1992) Microbiology: a laboratory Manuel, 3rd edn. Benjamin-Cummings publishing company, New York Chakraborty P, Tribedi P (2019) Functional diversity performs a key role in the isolation of nitrogen-fixing and phosphate-solubilizing bacteria from soil. Folia Microbiol 64:461–470. https://doi.org/10.1007/s12223-018-00672-1 Chen WP, Kuo TT (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21:22–60. https://doi.org/10.1093/nar/21.9.2260 Chen TH, Murata N (2008) Glycine betaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505. https://doi.org/10.1016/j.tplants.2008.06.007 Chivenge P, Mabhaudhi T, Modi AT, Mafongoya P (2015) The potential role of neglected and underutilized crop species as future crops under water scarce conditions in Sub-Saharan Africa. Int J Environ Res Public Health 12:5685–5711. https://doi.org/10.3390/ijerph120605685 Dagar JC (2016) Agroforestry for the management of waterlogged saline soils and poor- quality waters. Springer. https://doi.org/10.1007/978-81-322-2659-8_2 Danish S, Zafar-ul-Hye M (2019) Co-application of ACC-deaminase producing PGPR, and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci Rep 9:59–99. https://doi.org/10.1038/s41598-019-42374-9 Dunlap CA, Schisler DA, Perry EB, Connor N, Cohan FM, Rooney AP (2017) Bacillus swezeyisp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 67:2720–2725. https://doi.org/10.1099/ijsem.0.002007 Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–603. https://doi.org/10.1128/jb.75.5.592-603.1958 Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148. https://doi.org/10.3389/fmicb.2018.00148 Ewelina N, Sokołowska B (2022) Pseudomonas spp. in biological plant protection and growth promotion. AIMS Environ Sci 9:493–504. https://doi.org/10.3934/environsci.2022029 Fasusi OA, Babalola OO (2021) The multifaceted plant-beneficial rhizobacteria toward agricultural sustainability. Plant Prot Sci 57:95–111. https://doi.org/10.17221/130/2020-PPS Global Agricultural Productivity Reports (GAP Reports). In: Global Harvest Initiative, Washington (2018) Available via DIALOG. https://globalagriculturalproductivity.org/wp-content/uploads/2019/01/GHI_2018-GAP-Report_FINAL10.03.pdf Goswami D, Dhandhukiab P, Patel P, Thakker JN (2013) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. https://doi.org/10.1016/j.micres.2013.07.004 Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth-promoting rhizobacteria (PGPR). Cogent Food Agric 2:1–19. https://doi.org/10.1080/23311932.2015.1127500 Grieve CM, Grattan SR (1983) Rapid assay for the determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307. https://doi.org/10.1007/BF02374789 Hussain MI, Al-Dakheel AJ, Reigosa MJ (2018) Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: prospects for salinity tolerance and yield stability. Plant Physiol Biochem 129:411–420. https://doi.org/10.1016/j.plaphy.2018.06.02 Kerbab S, Silini A, Chenari-Bouket A, Cherif-Silini H, Eshelli M, El HoudaRabhi N, Belbahri L (2021) Mitigation of NaCl stress in wheat by rhizosphere engineering using salt habitat adapted PGPR halotolerant bacteria. Appl Sci 11:1034. https://doi.org/10.3390/app11031034 Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang SM, Lee IJ (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808. https://doi.org/10.1007/s13213-019-01470-x Khan MY, Nadeem SM, Sohaib M, Waqas MR, Alotaibi F, Ali L, Zahir ZA, Al-Barakah FNI (2022) Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Front Microbiol 13:958522. https://doi.org/10.3389/fmicb.2022.958522 Komaresofla BR, Alikhani HA, Etesami H, Khoshkholgh-Sima NA (2019) Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Appl Soil Ecol 138:160–170. https://doi.org/10.1016/j.apsoil.2019.02.022 Kour D, Rana KL, Sheikh I (2020) Alleviation of drought stress and plant growth promotion by Pseudomonas libanensis EU-LWNA-33, a drought-adaptive phosphorus-solubilizing bacterium. Proc Natl Acad Sci India Sect B Biol Sci 90:785–795. https://doi.org/10.1007/s40011-019-01151-4 Krishnaveni S, Theymoli S, Sadasivam S (1984) Sugar distribution in sweet stalk sorghum. Food Chem 15:229–232. https://doi.org/10.1016/0308-8146(84)90007-4 Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020) Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front Microbiol 11:12–16. https://doi.org/10.3389/fmicb.2020.01216 Lam NT, Song S, Dung BTN, Binh TN, Maleki A, Godini K, Tang VT (2022) Potential role of combined microbial inoculants and plant of Limnocharis flava on eliminating cadmium from artificial contaminated soil. Sustainability 14:12209. https://doi.org/10.3390/su141912209 Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–448. https://doi.org/10.2136/sssaj1978.03615995004200030009x Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787. https://doi.org/10.1104/pp.010497 Lucke M, Correa MG, Levy A (2020) The role of secretion systems, effectors, and secondary metabolites of beneficial Rhizobacteria in interactions with plants and microbes. Front Plant Sci 11:589416. https://doi.org/10.3389/fpls.2020.589416 Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398. https://doi.org/10.1006/anbo.1996.0134 Mangalassery S, Dayal D, Patel S (2017) Salinity characteristics of soils supporting halophyte vegetation in saline desert ecosystems in Western India. Ann Arid Zone 56:65–73 Martínez C, Espinosa-Ruiz A, Prat S (2016) Gibberellins and plant vegetative growth. Annu Plant Rev 49:285–322. https://doi.org/10.1002/9781119210436.ch10 Md. Reyad-ul-Ferdous, Shamim Shahjahan DM, Tanvir S, Mukti M (2015) Present biological status of potential medicinal plant of Amaranthus viridis: a comprehensive review. Am J Clin Exp Med 3:12–17. https://doi.org/10.11648/j.ajcem.s.2015030501.13 Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbio 43:51–56. https://doi.org/10.1007/s002840010259 Mohanan MV, Pushpanathan A, Sasikumar SPT, Selvarajan D, Jayanarayanan AN, Arun Kumar R, Ramalingam S, Karuppasamy SN, Subbiah R, Ram B, Chinnaswamy A (2020) Ectopic expression of DJ-1/PfpI domain containing Erianthus arundinaceus Glyoxalase III (EaGly III) enhances drought tolerance in sugarcane. Plant Cell Rep 39:1581–1594. https://doi.org/10.1007/s00299-020-02585-1 Mokrani S, Nabti E, Cruz C (2020) Current advances in plant growth-promoting bacteria alleviating salt stress for sustainable agriculture. Appl Sci 10:7025. https://doi.org/10.3390/app10207025 Mukherjee A, Gaurav AK, Singh S, Chouhan GK, Kumar A, Das S (2019) Role of potassium (K) solubilising microbes (KSM) in growth and induction of resistance against biotic and abiotic stress in plant: a book review. Clim Change Environ Sustain 7:212–214 Murali M, Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Niranjana SR, Amruthesh KN (2021) Bio-prospecting of ACC deaminase producing Rhizobacteria towards sustainable agriculture: a special emphasis on abiotic stress in plants. Appl Soil Ecol 168:104142. https://doi.org/10.1016/j.apsoil.2021.104142 Naz I, Bano A, Ul-Hassan T (2009) Isolation of phytohormones producing plant growth-promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–5768. https://doi.org/10.5897/AJB09.1176 Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture, USA Park SJ, Sharma A, Lee HJ (2020) A review of recent studies on the antioxidant activities of a third-millennium food: Amaranthus spp. Antioxidants 9:1236. https://doi.org/10.3390/antiox912123619 Patel A, Pandey AN (2008) Growth, water status and nutrient accumulation of seedlings of Holoptelea integrifolia (Roxb.) Planch in response to soil salinity. Plant Soil Environ 54:367–373. https://doi.org/10.17221/407-PSE Patel A, Jadeja H, Pandey A (2010) Effect of salinization of soil on growth, water status and nutrient accumulation in seedlings of Acacia auriculiformis (Fabaceae). J Plant Nutr 33:914–932. https://doi.org/10.1080/01904161003669939 Patel AD, Lalcheta K, Gill SS, Tuteja N (2014) Salinity tolerance of Avicennia officinalis L. (Acanthaceae) from Gujarat Coasts of India. In: Tuteja N, Gill SS (eds) climate change and plant abiotic stress tolerance, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 189–208 Patel RR, Thakkar RV, Subramanian RB (2016) Simultaneous detection and quantification of phytohormones by a sensitive method of separation in culture of Pseudomonas sp. Curr Microbiol 72:744–751. https://doi.org/10.1007/s00284-016-1012-1 Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://doi.org/10.3389/fpls.2016.01123 Rajawat MS, Singh S, Tyagi SP, Saxena AK (2016) A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere 26:768–773. https://doi.org/10.1016/S1002-0160(15)60080-7 Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springer Plus 2:6. https://doi.org/10.1186/2193-1801-2-6 Rana KL, Kour D, Kaur T (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y Ratan S, Bhawana P, Fulekar MH (2015) Characterization of PGP traits by heavy metals tolerant Pseudomonas putida and Bacillus safensis strain isolated from rhizospheric zone of weed (Phyllanthus urinaria) and its efficiency in Cd and Pb Removal. Int J Curr Microbiol App Sci 4:954–975 Redondo-Gómez S, Mesa-Marín J, Pérez-Romero JA, López-Jurado J, García-López JV, Mariscal V, Molina-Heredia FP, Pajuelo E, Rodríguez-Llorente ID, Flowers TJ (2021) Consortia of plant-growth-promoting rhizobacteria isolated from halophytes improve response of eight crops to soil salinization and climate change conditions. Agronomy 11:1609. https://doi.org/10.3390/agronomy11081609 Rehman S, Jermy R, Akhtar S, Borgio JF, Abdulazeez S, Ravinayagam V, Jindan R, Alsalem Z, Buhameid A, Gani A (2019) Isolation and characterization of a novel thermophile, Bacillus haynesii, applied for the green synthesis of ZnO nanoparticles. Artifi Cells Nanomed Biotechnol 47:2072–2082. https://doi.org/10.1080/21691401.2019.1620254 Richard PO, Adekanmbi AO, Ogunjobi AA (2018) Screening of bacteria isolated from the rhizosphere of maize plant (Zea mays L.) for ammonia production and nitrogen fixation. Afr J Microbiol Res 12:829–834. https://doi.org/10.5897/AJMR2018.8957 Rolfe SA, Griffiths J, Ton J (2019) Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 49:73–82. https://doi.org/10.1016/j.mib.2019.10.003 Sadasivam S, Manickam A (1996) Biochemical methods for agricultural sciences. New Age International, New Delhi Sapre S, Gontia-Mishra I, Tiwari S (2018) Klebsiellasp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol Res 206:25–32. https://doi.org/10.1016/j.micres.2017.09.009 Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9 Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. In: Shabala S, (ed) Plant Stress Physiol, CABI, Austrelia, 24–63. https://doi.org/10.1079/9781845939953.0059 Shahid A, Linan X (2020) Plant growth-promoting and stress mitigating abilities of soil born microorganisms. Recent Pat Food Nutr Amp Agric 11:96–104. https://doi.org/10.2174/2212798410666190515115548 Shahid M, Ameen F, Maheshwari H, Ahmed B, AlNadhari S, Khan M (2021) Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Appl Soil Ecol 158:103809. https://doi.org/10.1016/j.apsoil.2020.103809 Shahzad R, Khan AL, Bilal S, Asaf S, Lee IJ (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24. https://doi.org/10.3389/fpls.2018.00024 Shameer S, Prasad T (2018) Plant growth-promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul 84:603–615. https://doi.org/10.1007/s10725-017-0365-1 Sharma A, Dev K, Sourirajan A, Choudhary M (2021) Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana. India J Genet Eng Biotechnol 19:99. https://doi.org/10.1186/s43141-021-00186-3 Shultana R, Zuan ATK, Naher UA, Islam AKMM, Rana MM, Rashid MH, Irin IJ, Islam SS, Rim AA, Hasan AK (2022) The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agron 12:2266. https://doi.org/10.3390/agronomy12102266 Singh RP, Jha PN (2016) A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Front Plant Sci 7:1890. https://doi.org/10.3389/fpls.2016.01890 Singh RP, Jha PN (2017) The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol 8:1945. https://doi.org/10.3389/fmicb.2017.01945 Singh SB, Gowtham HG, Aiyaz M, Niranjana SR (2019) Changes in enzymatic and non-enzymatic defense systems induced by ACCd producing PGPR aid sunflower plants to tolerate drought stress. Int J Pharm Biol Sci 9:782–791. https://doi.org/10.21276/ijpbs.2019.9.1.99 Singh DP, Singh V, Gupta VK, Shukla R, Prabha R, Sarma BK (2020) Microbial inoculation in rice regulates antioxidative reactions and defense related genes to mitigate drought stress. Sci Rep 10:4818. https://doi.org/10.1038/s41598-020-61140-w Sofy MR, Aboseidah AA, Heneidak SA, Ahmed HR (2021) ACC deaminase containing endophytic bacteria ameliorate salt stress in Pisum sativum through reduced oxidative damage and induction of antioxidative defense systems. Environ Sci Pollut Res Int 28:40971–40991. https://doi.org/10.1007/s11356-021-13585-3 Subbaih BV, Asija GL (1956) Available rapid procedure for the estimation of available nitrogen in soils. Curr Sci 25:259–260 Teulat B, Zoumarou-Wallis N, Rotter B, Salem MB, Bahri H, This D (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188. https://doi.org/10.1007/s00122-003-1417-7 Toth SJ, Prince AL (1949) Estimation of cation exchange capacity and exchangeable Ca, K and Na contents of soils by flame photometric techniques. Soil Sci 67:439–445. https://doi.org/10.1097/00010694-194906000-00003 Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidants status of wheat under saline conditions. Plant Biol 4:605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x Vaghela P, Patel A, Pandey I, Pandey A (2010) Implications of calcium nutrition on the response of Salvadora persica (Salvadoraceae) to Soil Salinity. Commun Soil Sci Plant Anal 41:2644–2660. https://doi.org/10.1080/00103624.2010.517881 Verhoef R, Waard DP, Schols HA, Siika-aho M, Voragen AG (2003) Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvatedgalactan exopolysaccharide. Carbohydr Res 338:1851–1859. https://doi.org/10.1016/S0008-6215(03)00261-1 Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth-promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286. https://doi.org/10.1016/j.ecoleng.2012.12.022 Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth-promoting rhizobacteria. Microbiol Res 184:13–24. https://doi.org/10.1016/j.micres.2015.12.003 Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Multifunctional Pseudomonas putida strain FBKV2 from arid rhizosphere soil and its growth promotional effects on maize under drought stress. Rhizosphere 1:4–13. https://doi.org/10.1016/j.rhisph.2016.07.005 Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth-promoting and biocontrol activity of Streptomyces spp. as Endophytes. Int J Mol Sci 19:952. https://doi.org/10.3390/ijms19040952 Walkley A, Black IA (1934) An examination of the Kjeldahl method for determining soil organic matter. Soil Sci 37:29–38 Woo SL, Pepe O (2018) Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front Plant Sci 9:1801. https://doi.org/10.3389/fpls.2018.01801 Wu T, Xu J, Liu J, Guo WH, Li XB, Xia JB, Xie WJ, Yao ZG, Zhang YM, Wang RQ (2019) Characterization and initial application of endophytic bacillus safensis strain zy16 for improving phytoremediation of oil-contaminated saline soils. Front Microbiol 10:991. https://doi.org/10.3389/fmicb.2019.00991 Yasmin H, Naeem S, Bakhtawar M (2020) Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS One 15:e0231348. https://doi.org/10.1371/journal.pone.0231348 Zaheer MS, Ali HH, Iqbal MA, Erinle KO, Javed T, Iqbal J, Hashmi MIU, Mumtaz MZ, Salama EAA, Kalaji HM, Wróbel J, Dessoky ES (2022) Cytokinin production by Azospirillum brasilense contributes to increase in growth, yield, antioxidant, and physiological systems of wheat (Triticum aestivum L.). Front Microbiol 13:886041. https://doi.org/10.3389/fmicb.2022.886041 Zhang M, Yang L, Hao R (2020) Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil 452:423–440. https://doi.org/10.1007/s11104-020-04582-5 Zhou N, Zhao S, Tian CY (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364:11. https://doi.org/10.1093/femsle/fnx091 Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. https://doi.org/10.1016/s1360-1385(00)01838-0