Multi-strategy engineering unusual sugar TDP-l-mycarose biosynthesis to improve the production of 3-O-α-mycarosylerythronolide B in Escherichia coli
Tài liệu tham khảo
Cao, 2011, Carbohydrate-containing natural products in medicinal chemistry, 411
Wu, 2020, Therapeutic potential of phenylethanoid glycosides: a systematic review, Med Res Rev, 40, 2605, 10.1002/med.21717
Mrudulakumari Vasudevan, 2020, Flavonoids, terpenoids, and polyketide antibiotics: role of glycosylation and biocatalytic tactics in engineering glycosylation, Biotechnol Adv, 41, 107550, 10.1016/j.biotechadv.2020.107550
Weymouth-Wilson, 1997, The role of carbohydrates in biologically active natural products, Nat Prod Rep, 14, 99, 10.1039/np9971400099
Xiao, 2017, Dietary flavonoid aglycones and their glycosides: which show better biological significance?, Crit Rev Food Sci Nutr, 57, 1874
Xiao, 2016, Advance on the flavonoid C-glycosides and health benefits, Crit Rev Food Sci Nutr, 56, S29, 10.1080/10408398.2015.1067595
Xu, 2021, Microbial oligosaccharides with biomedical applications, Mar Drugs, 19, 350, 10.3390/md19060350
Fang, 2018, Broadened glycosylation patterning of heterologously produced erythromycin, Biotechnol Bioeng, 115, 2771, 10.1002/bit.26735
Thibodeaux, 2008, Natural-product sugar biosynthesis and enzymatic glycodiversification, Angew Chem Int Ed Engl, 47, 9814, 10.1002/anie.200801204
Zhang, 2015, Tailoring pathway modularity in the biosynthesis of erythromycin analogs heterologously engineered in E. coli, Sci Adv, 1, 10.1126/sciadv.1500077
Madduri, 1998, Production of the antitumor drug epirubicin (4′-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius, Nat Biotechnol, 16, 69, 10.1038/nbt0198-69
Brown, 2020, Pathway engineering of anthracyclines: blazing trails in natural product glycodiversification, J Org Chem, 85, 12012, 10.1021/acs.joc.0c01863
De Bruyn, 2015, Metabolic engineering of Escherichia coli into a versatile glycosylation platform: production of bio-active quercetin glycosides, Microb Cell Factories, 14, 138, 10.1186/s12934-015-0326-1
Feng, 2020, Advances in engineering UDP-sugar supply for recombinant biosynthesis of glycosides in microbes, Biotechnol Adv, 41, 107538, 10.1016/j.biotechadv.2020.107538
Huang, 2016, Enhanced production of beta-glucosides by in-situ UDP-glucose regeneration, J Biotechnol, 224, 35, 10.1016/j.jbiotec.2016.02.022
Xu, 2011, Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA, Metab Eng, 13, 578, 10.1016/j.ymben.2011.06.008
Simkhada, 2010, Genetic engineering approach for the production of rhamnosyl and allosyl flavonoids from Escherichia coli, Biotechnol Bioeng, 107, 154, 10.1002/bit.22782
Bi, 2021, Biosynthesis of a rosavin natural product in Escherichia coli by glycosyltransferase rational design and artificial pathway construction, Metab Eng, 69, 15, 10.1016/j.ymben.2021.10.010
Chen, 2019, Synthesis of isorhamnetin-3-O-rhamnoside by a three-enzyme (rhamnosyltransferase, glycine max sucrose synthase, UDP-rhamnose synthase) cascade using a UDP-rhamnose regeneration system, Molecules, 24, 3042, 10.3390/molecules24173042
Pei, 2016, Metabolic engineering of Escherichia coli for astragalin biosynthesis, J Agric Food Chem, 64, 7966, 10.1021/acs.jafc.6b03447
Zabala, 2013, Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus, Metab Eng, 20, 187, 10.1016/j.ymben.2013.10.002
Zabala, 2016, Increasing antibiotic production yields by favoring the biosynthesis of precursor metabolites glucose-1-phosphate and/or malonyl-CoA in Streptomyces producer strains, J Antibiot (Tokyo), 69, 179, 10.1038/ja.2015.104
Zhou, 2011, Over-expression of UDP-glucose pyrophosphorylase increases validamycin A but decreases validoxylamine A production in Streptomyces hygroscopicus var. jinggangensis 5008, Metab Eng, 13, 768, 10.1016/j.ymben.2011.10.001
Liu, 2022, Engineered EryF hydroxylase improving heterologous polyketide erythronolide B production in Escherichia coli, Microb Biotechnol
Peirú, 2005, Production of the potent antibacterial polyketide erythromycin C in Escherichia coli, Appl Environ Microbiol, 71, 2539, 10.1128/AEM.71.5.2539-2547.2005
Zhang, 2010, Complete biosynthesis of erythromycin A and designed analogs using E. coli as a heterologous host, Chem Biol, 17, 1232, 10.1016/j.chembiol.2010.09.013
Jiang, 2013, Improved heterologous erythromycin A production through expression plasmid re‐design, Biotechnol Prog, 29, 862, 10.1002/btpr.1759
Peiru, 2008, Metabolically engineered Escherichia coli for efficient production of glycosylated natural products, Microb Biotechnol, 1, 476, 10.1111/j.1751-7915.2008.00046.x
Pfeifer, 2001, Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli, Science, 291, 1790, 10.1126/science.1058092
Jiang, 2015, Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl Environ Microbiol, 81, 2506, 10.1128/AEM.04023-14
Collum, 1976, 3-O-(2″,6″-dideoxy-α-L-ribo-hexopyranosyl)-erythronolide B and 3-O-(2″,6″,dideoxy-α-L-arabino-hexopyranosyl)erythronolide B, aberrant erythromycin biogenetic metabolites with defective sugar moities, Tetrahedron, 32, 2375, 10.1016/0040-4020(76)87017-2
Malla, 2013, Regiospecific modifications of naringenin for astragalin production in Escherichia coli, Biotechnol Bioeng, 110, 2525, 10.1002/bit.24919
Pandey, 2013, Production of 3-O-xylosyl quercetin in Escherichia coli, Appl Microbiol Biotechnol, 97, 1889, 10.1007/s00253-012-4438-9
Wu, 2017, Establishing a synergetic carbon utilization mechanism for non-catabolic use of glucose in microbial synthesis of trehalose, Metab Eng, 39, 1, 10.1016/j.ymben.2016.11.001
Pfeiffer, 2014, Yihx-encoded haloacid dehalogenase-like phosphatase HAD4 from Escherichia coli is a specific alpha-D-glucose 1-phosphate hydrolase useful for substrate-selective sugar phosphate transformations, J Mol Catal B Enzym, 110, 39, 10.1016/j.molcatb.2014.09.004
Marolda, 1999, Genetic organization of the O7-specific lipopolysaccharide biosynthesis cluster of Escherichia coli VW187 (O7:K1), Microbiology, 145, 2485, 10.1099/00221287-145-9-2485
Meza, 2012, Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli, Microb Cell Factories, 11, 127, 10.1186/1475-2859-11-127