Multi-scale waves in sound-proof global simulations with EULAG
Tóm tắt
EULAG is a computational model for simulating flows across a wide range of scales and physical scenarios. A standard option employs an anelastic approximation to capture nonhydrostatic effects and simultaneously filter sound waves from the solution. In this study, we examine a localized gravity wave packet generated by instabilities in Held-Suarez climates. Although still simplified versus the Earth’s atmosphere, a rich set of planetary wave instabilities and ensuing radiated gravity waves can arise. Wave packets are observed that have lifetimes ≤ 2 days, are negligibly impacted by Coriolis force, and do not show the rotational effects of differential jet advection typical of inertia-gravity waves. Linear modal analysis shows that wavelength, period, and phase speed fit the dispersion equation to within a mean difference of ∼ 4%, suggesting an excellent fit. However, the group velocities match poorly even though a propagation of uncertainty analysis indicates that they should be predicted as well as the phase velocities. Theoretical arguments suggest the discrepancy is due to nonlinearity — a strong southerly flow leads to a critical surface forming to the southwest of the wave packet that prevents the expected propagation.
Tài liệu tham khảo
Achatz, U., R. Klein, and F. Senf (2010), Gravity waves, scale asymptotics and the pseudo-incompressible equations, J. Fluid Mech. 663, 120–147, DOI:10.1017/S0022112010003411.
Andrews, D.G., J.R. Holton, and C.B. Leovy (1987), Middle Atmosphere Dynamics, Ch. 4, Academic Press Inc., Orlando, FL, 150–219.
Arakawa, A., and C.S. Konor (2009), Unification of the anelastic and quasihydrostatic systems of equations, Month.Weather Rev. 137,2, 710–726, DOI:10.1175/2008MWR2520.1.
Berrisford, P., B.J. Hoskins, and E. Tyrlis (2007), Blocking and Rossby wave breaking on the dynamical tropopause in the southern hemisphere, J. Atmos. Sci. 64,8, 2881–2898, DOI: 10.1175/JAS3984.1.
Bretherton, F.P. (1966), The propagation of groups of internal gravity waves in a shear flow, Quart. J. Roy. Met. Soc. 92,394, 466–480, DOI: 10.1002/qj.49709239403.
Bretherton, F.P. (1971), The general linearized theory of wave propagation. In: Mathematical Problems in the Geophysical Sciences: 1. Geophysical Fluid Dynamics, Lectures in Applied Mathematics, Vol. 13, American Math. Soc., Providence, RI, 61–102.
Clark, T.L., and R.D. Farley (1984), Severe downslope windstorm calculations in two and tree spatial dimensions using anelastic interactive grid nesting: a possible mechanism for gustiness, J. Atmos. Sci. 41,3, 329–350, DOI: 10.1175/1520-0469(1984)041<0329:SDWCIT>2.0.CO;2.
Davies, T., A. Staniforth, N. Wood, and J. Thuburn (2003), Validity of anelastic and other equation sets as inferred from normal-mode analysis, Quart. J. Roy. Met. Soc. 129, 2761–2775, DOI: 10.1256/qj.02.195.
Durran, D.R. (1989), Improving the anelastic approximation, J. Atmos. Sci. 46, 1453–1461, DOI: 10.1175/1520-0469(1989)046<1453:ITAA>2.0.CO;2.
Held, I.M., and M.J. Suarez (1994), A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models, Bull. Amer. Meteor. Soc. 75,10, 1825–1830, DOI: 10.1175/1520-0477(1994)075 <1825: APFTIO>2.0.CO;2.
Holton, J.R. (2004), An Introduction to Dynamic Meteorology, Section 7.6, 4th ed., Elsevier Academic Press, Amsterdam, 208–213.
Houghton, J.T. (1986), The Physics of Atmospheres, Appendix 5, 2nd ed., Cambridge University Press, Cambridge, 232–234.
Jablonowski, C., and D.L. Williamson (2006), Baroclinic wave test case for dynamical cores of general circulation models: Model intercomparisons, NCAR Technical Note.
Klein, R., (2010), On the regime of validity of sound-proof model equations for atmospheric flows. In: ECMWF Workshop on Nonhydrostatic Modelling, 8–10 November 2010, Reading, United Kingdom, http://www.ecmwf.int/publications/library/do/references/list/201010.
Klein, R., U. Achatz, D. Bresch, O.M. Knio, and P.K. Smolarkiewicz (2010), Regime of validity of soundproof atmospheric flow models, J. Atmos. Sci. 67,10, 3226–3237, DOI: 10.1175/2010JAS3490.1.
Lipps, F.B., and R.S. Hemler (1982), A scale analysis of deep moist convection and some related numerical calculations, J. Atmos. Sci. 39,10, 2192–2210, DOI:10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2.
Novikov, E.A. (1993), Discussion “Small scale vortices in turbulent flows”. In: Th. Dracos and A. Tsinober (eds.), Proc. New Approaches and Concepts in Turbulence, 9–13 September 1991, Monte Verità, Birkhäuser.
O’sullivan, D., and T.J. Dunkerton (1995), Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability, J. Atmos. Sci. 52,21, 3695–3716, DOI: 10.1175/1520-0469(1995)052<3695:GOIWIA>2.0.CO;2.
Pelly, J.L., and B.J. Hoskins (2003), A new perspective in blocking, J. Atmos. Sci. 60,5, 743–755, DOI: 10.1175/1520-0469(2003)060<0743:ANPOB>2.0.CO;2.
Plougonven, R., and C. Synder (2007), Inertia-gravity waves spontaneously generated by jets and fronts. Part I: different baroclinic life cycles, J. Atmos. Sci. 64,7, 2502–2520, DOI: 10.1175/JAS3953.1.
Prusa, J.M., and W.J. Gutowski (2006), MPDATA and grid adaptivity in geophysical fluid flow models, Int. J. Num. Meth. Fluids 50,10, 1207–1228, DOI:10.1002/fld.1152.
Prusa, J.M., and W.J. Gutowski (2010), Multi-scale features of baroclinic waves in sound-proof, global simulations with EULAG. In: Proc. fifth European Conference on Computational Fluid Dynamics, 14–17 June 2010, Lisbon, Portugal, CD-ROM, paper #1453.
Prusa, J.M., and P.K. Smolarkiewicz (2003), An all-scale anelastic model for geophysical flows: dynamic grid deformation, J. Comput. Phys. 190,2, 601–622, DOI: 10.1016/S0021-9991(03)00299-7.
Prusa, J.M., P.K. Smolarkiewicz, and R.R. Garcia (1996), Propagation and breaking at high altitudes of gravity waves excited by tropospheric forcing, J. Atmos. Sci. 53,15, 2186–2216, DOI: 10.1175/1520-0469(1996)053 <2186:PABAHA>2.0.CO;2.
Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37,9, 1193–1207, DOI:10.1016/j.compfluid.2007.12.001.
Rider, W.J. (2006), The relationship of MPDATA to other high-resolution methods, Int. J. Num. Meth. Fluids 50,10, 1145–1158, DOI: 10.1002/fld.1084.
Smith, R.B. (1979), The influence of mountains on the atmosphere, Adv. Geophys. 21, 87–230, DOI: 10.1016/S0065-2687(08)60262-9.
Smolarkiewicz, P.K. (2006), Multidimensional positive definite advection transport algorithm: an overview, Int. J. Num. Meth. Fluids 50,10, 1123–1144, DOI:10.1002/fld.1071.
Smolarkiewicz, P.K., and J.M. Prusa (2002), Forward-in-time differencing for fluids: simulation of geophysical turbulence. In: D. Drikakis and B.J. Guertz (eds.), Turbulent Flow Computation, Ch. 8, Kluwer Academic Publishers, Dordrecht, 279–312.
Smolarkiewicz, P.K., and J.A. Pudykiewicz (1992), A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci. 49,22, 2082–2096, DOI: 10.1175/1520-0469(1992)049<2082:ACOSLA>2.0.CO;2.
Smolarkiewicz, P.K., and J. Szmelter (2011), A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves, Acta Geophys. 59, 6, DOI: 10.2478/s11600-011-0043-z.
Smolarkiewicz, P.K., and C.L. Winter (2010), Pores resolving simulation of Darcy flows, J. Comput. Phys. 229,9, 3121–3133, DOI: 10.1016/j.jcp.2009.12.031.
Smolarkiewicz, P.K., V. Grubisic, and L.G. Margolin (1997), On forward-in-time differencing for fluids: stopping criteria for iterative solutions of anelastic pressure equations, Month. Weather Rev. 125,4, 647–654, DOI: 10.1175/1520-0493(1997)125<0647:OFITDF>2.0.CO;2.
Smolarkiewicz, P.K., L.G. Margolin, and A.A. Wyszogrodzki (2001), A class of nonhydrostatic global models, J. Atmos. Sci. 58,4, 349–364, DOI: 10.1175/1520-0469(2001)058<0349:ACONGM>2.0.CO;2.
Waite, M.L., and P.K. Smolarkiewicz (2008), Instability and breakdown of a vertical vortex pair in a strongly stratified fluid, J. Fluid Mech. 606, 239–273, DOI:10.1017/S0022112008001912.
Zhang, F. (2004), Generation of mesoscale gravity waves in upper-tropospheric jetfront systems, J. Atmos. Sci. 61,4, 440–457, DOI: 10.1175/1520-0469(2004)061<0440:GOMGWI>2.0.CO;2.